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Abstract

In this paper we present general constructions of orthogonal and biorthogonal mul-
tiresolution analysis on the interval. In the first one, we describe a direct method to
define an orthonormal multiresolution analysis. In the second one, we use the integra-
tion and derivation method for constructing a biorthogonal multiresolution analysis.
As applications, we prove that these analyses are adapted to study regular functions on
the interval.
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1 Introduction

The search for wavelet bases on a bounded domain has been an active field for many
years, since the beginning of the 1990’s. All these constructions use either the basis of
I. Daubechies or the spline basis. In his fundamental paper on wavelets on the interval [14],
Y. Meyer proved that one can take restrictions of the orthonormal multiresolution analysis
of I. Daubechies to the interval [0,1] and then we can study functions known only on the
interval. More precisely, he proves that the restrictions of Daubechies scaling functions
on the interval are linearly independent but the restrictions of associated wavelets on the
interval are not linearly independent.

In 1992, we have constructed multiresolution analysis on the interval by using Daubechies
wavelets [9]. The associated bases have compact support and allow also the study of
divergence-free vector functions on [0,1]n.

There are related constructions as well by A. Canuto and coworkers [1] and by A. Jouini
and P. G. Lemarié ([8] and [10]).
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In this paper we aime to generalize the result for every orthonormal multiresolution
analysis. Next, we present orthogonal and biorthogonal systems on [0,1] which are con-
structed by means of dyadic translations and dilatations from a finite number of basic func-
tions and are well-adapted to study Sobolev spaces Hs([0,1]) and Hs

0([0,1]) (s ∈ Z).
The contents of this paper is the following.
In Section 2, we at first define and construct new orthogonal multiresolution analysis

on the interval [0,1]. Next, we prove the Meyer’s lemma [14] for the general case of an or-
thonormal multiresolution analysis with compact support. Then,we construct the associated
wavelet bases which are more technical. In section 3, we study biorthogonal multiresolu-
tion analysis (Vj,V ∗

j ) ( j ∈ Z) on the interval [0,1] . By a derivation on Vj and an integration

on V ∗
j , we get a new biorthogonal multiresolution analysis (Ṽj,Ṽj

∗
) of the space L2([0,1]).

If we denote Pj the projector from L2([0,1]) on Vj parallel to (V ∗
j )⊥and P̃j be the projector

in Ṽj parallel to (Ṽj
∗
)⊥, then we have the following commutation property

d
dx

oPj = P̃jo
d
dx

.

The section 4 is devoted to applications. We prove that the biorthogonal multiresolution
analysis constructed in section 3 is adapted to study Sobolev spaces Hs([0,1]) and Hs

0([0,1])
for s ∈ Z.

2 Orthogonal multiresolution analysis on the inerval [0,1]

It is clear that if we consider an orthogonal multiresolution analysis, and if we take its re-
striction to [0,1], we do not get an orthogonal multiresolution analysis of L2([0,1]). More-
over, for the orthogonal multiresolution analysis Vj(R) of I. Daubechies, if we consider the
associated scaling functions ϕ j,k(x)[0,1], we have an independent system which is not or-
thogonal. However, if we consider the associated wavelets ψ j,k(x)[0,1], we get a dependent
system (see [14]) and the support of the wavelet ψ is very important in this case. Then, the
construction of an orthogonal multiresolution analysis in [0,1] (or biorthogonal) is technical
especially near the boundaries 0 and 1.

In this section, we shall prove the precedent result for any orthogonal multiresolution
analysis with compact support and regular (see definition 3 in [9]). More precisely, we use a
direct method based on the result described in [14] to construct orthogonal multiresolution
analysis on the interval [0,1] which are generated by a finite number of basic functions.
These analyses are regular and have compact support.

For this purpose, we consider an orthogonal multiresolution analysis Vj(R) of L2(R)
where the scaling function ϕ have a compact support [N1,N2]. We recall first the scaling
equations for this analysis. The inclusion V0 ⊂V1 gives the two following equations

ϕ(
x
2
) =

N2

∑
k=N1

akϕ(x− k) where aN1aN2 6= 0 (2.1)

and

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ) where m0(ξ) =
1
2

N2

∑
k=N1

ake−ikξ. (2.2)
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We assume that the associated wavelet ψ have the same support (by a simple translation)
and then is defined by

ψ(
x
2
) =

N2

∑
k=N1

bkϕ(x− k) where bN1bN2 6= 0. (2.3)

Note that we cannot define in the same manner as classical wavelet theory the notion of
multiresolution analysis in the interval because we do not have the invariance and dilatation
properties in a bounded domain. Then, we present differently this notion. Let j0 be an
integer such that 2 j0 ≥ 2(N2 −N1 − 1) (we can separate the boundaries functions). We
denote by

Vj([0,1]) = Vect{ϕ j,k[0,1],ϕ j,k ∈Vj(R)}, (2.4)

and
v j([0,1]) = Vect{ϕ j,k,suppϕ j,k ⊂ [0,1]}. (2.5)

Definition 2.1. A sequence {Vj} j≥ j0 of closed subspaces of L2([0,1]) is called a multires-
olution analysis on L2([0,1]) associated with Vj(R) if

i) ∀ j ≥ j0, v j([0,1])⊂ Vj ⊂Vj([0,1])

ii) ∀ j ≥ j0, Vj ⊂ Vj+1.

It is clear that these spaces contain a finite number of functions due to compacity of the
support and then the Gram-Schmidt method gives orthonormal systems if these systems are
linearly independent. We now proceed to prove an elementary lemma which will be useful
in analysis for functions defined on the interval [0,1] . We begin by the case of the interval
]−∞,0]. In fact, we prove that only the functions ϕ j,k whose support intersects the interval
]−∞,0[ occur in the analysis of an arbitrary function in V0(R) and with support in ]−∞,0].

Lemma 2.1. If f (x) =
+∞

∑
−∞

ckϕ(x− k) is a function of V0(R) such that f (x) = 0 for x ≤ 0.

Then ck = 0 for k ≤−N1−1.

Proof. The support of the function ϕ(x− k) is [k +N1,k +N2] and then is included in
]−∞,0] for k ≤−N2. We have ck =

∫ +∞
−∞ f (x)ϕ(x− k)dx = 0 for k ≤−N2.

Let p be the smallest integer of k such that ck 6= 0. If p≥−N1, then we have the result.
If p < −N1, then f (x) = 0 on the interval [p + N1, p + N1 + 1] Because the support of the
scaling function ϕ is equal to [N1,N2]. Using the hypothesis that f is a function of V0(R),
we obtain f (x) = cpϕ(x− p). Then, we have a contradiction.

The following result generalizes the result of Y. Meyer [14] and gives an other multires-
olution analysis of L2([0,1]).

Theorem 2.1. Let j ≥ j0 and f (x) =
+∞

∑
−∞

ckϕ(2 jx− k) be a function of Vj(R) such that

f (x) = 0 for 0≤ x≤ 1. Then ck = 0 for −N2 +1≤ k ≤ 2 j−N1−1.
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Proof. Let j ≥ j0 and 2 j0 ≥ 2(N2−N1−1), we can consider three cases.
1) If −N2 +1≤ k ≤−N1−1, the support of the scaling functions ϕ j,k is included in
]−∞,N2−N1−1]⊂]−∞, 1

2 ].
2) If −N1 ≤ k ≤ 2 j−N2, the support of the scaling functions ϕ j,k is included in [0,1].
3) If 2 j−N2 +1≤ k ≤ 2 j−N1−1 , the support of the scaling functions ϕ j,k is included in
[N2−N1−1,+∞[⊂ [1

2 ,+∞[.
We see that in the case 2), we have

ck =
∫ +∞

−∞
f (x)ϕ(x− k)dx = 0.

Applying Lemma 2.1 to the first case and the third case, we get ck = 0. This yields ck = 0
for −N2 +1≤ k ≤ 2 j−N1−1.

Theorem 2.1 is the basis for our strategy: to get the bases on the interval. As a conse-
quence, we have the following result.

Corollary 2.1. For j ≥ j0, the functions ϕ j,k/[0,1], −N2 +1≤ k≤ 2 j−N1−1, form a Riesz
basis of the space Vj([0,1]).

Remark 2.1. The results described above are true for every integer j by using an iteration
and Lemma 2 in [14].

Corollary 2.2. For j ≥ j0,

i) there exist (N2 − N1 − 1) functions ϕα
i (1 ≤ i ≤ N2 − N1 − 1) and (N2 − N1 − 1)

functions ϕβ
i (1 ≤ i ≤ N2−N1− 1) such that the functions ϕα

i, j = 2 j/2ϕα
i (2 jx)|[0,1],

(1 ≤ i ≤ N2 −N1 − 1), ϕ j,k = 2 j/2ϕ(2 jx− k) , (−N1 ≤ k ≤ 2 j −N2), and ϕβ
i, j =

2 j/2ϕβ
i (2

jx−2 j)|[0,1], (1≤ i≤ N2−N1−1), form an orthonormal basis of Vj([0,1]).

ii) Let Vj, j ≥ j0 (for large value j), be a multiresolution analysis of L2([0,1]) asso-
ciated with Vj(R) and satisfying separation condition, then there exist Nα func-
tions ϕα

i (1 ≤ i ≤ Nα) and Nβ functions ϕβ
i (1 ≤ i ≤ Nβ) such that the functions

ϕα
i, j = 2 j/2

i ϕβ
i (2

jx)|[0,1],(1 ≤ i ≤ Nα),ϕ j,k = 2 j/2ϕ(2 jx− k) , (−N1 ≤ k ≤ 2 j −N2),

and ϕβ
i, j = 2 j/2ϕβ

i (2
jx−2 j)|[0,1],(1≤ i≤ Nβ), form an orthonormal basis of Vj.

Proof. It is clear now how to get an orthogonal basis of Vj([0,1]). It is enough to apply
Gram-Schmidt to functions ϕ j,k/[0,1], −N2 + 1 ≤ k ≤ −N1− 1 ( near the boundary 0) and
then to functions ϕ j,k/[0,1], 2 j −N2 + 1 ≤ k ≤ 2 j −N1− 1 (near the boundary 1). In every
case, we have (N2−N1− 1) functions. We obtain new functions ϕα

i, j = 2 j/2ϕα
i (2 jx)|[0,1],

(1 ≤ i ≤ N2 −N1 − 1) near the boundary 0 and in the same way new functions ϕβ
i, j =

2 j/2ϕβ
i (2

jx− 2 j)|[0,1], (1 ≤ i ≤ N2 −N1 − 1) near the boundary 1. To prove ii), we ap-
ply the method described above to every multiresolution analysis on the interval defined as
Definition 2.1.
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Remark 2.2. It is easy to see that the space Vj contains the orthonormal system ϕ j,k =
2 j/2ϕ(2 jx− k) ,(−N1 ≤ k ≤ 2 j−N2), and we add boundaries functions near 0 and 1 from
the collections ϕα

i, j and ϕβ
i, j .

We define
V T

j ([0,1]) = { f ∈Vj([0,1])/ f |T = 0}, (2.6)

where T ⊂ {0,1} and j ≥ j0. We obviously have

V T
j ([0,1])⊂V T

j+1([0,1]). (2.7)

The corresponding spaces V T
j ([0,1] are generated by the functions (ϕ j,k)|[0,1], k ∈DT

j where
the set DT

j is defined by
* DT

j = {k| −N1 ≤ k ≤ 2 j−N2} if T = {0,1}.
* DT

j = {k| −N1 ≤ k ≤ 2 j−N1−1} if T = {0}.
* DT

j = {k| −N2 +1≤ k ≤ 2 j−N2} if T = {1}.
* DT

j = {k| −N2 +1≤ k ≤ 2 j−N1−1} if T = /0.

Using Corollary 2.2, we obtain an orthonormal basis of V T
j ([0,1]).

Theorem 2.2. The space V T
j ([0,1]) has orthonormal basis (ϕT

j,k), k ∈ DT
j where

i) ϕT
j,k = ϕ j,k = 2 j/2ϕ(2 jx− k) ,(−N1 ≤ k ≤ 2 j−N2) if T = {0,1}.

ii) ϕT
j,k = ϕ j,k = 2 j/2ϕ(2 jx−k) ,(−N1 ≤ k≤ 2 j−N2), ϕT

j,k = ϕβ
j,k−2 j+N2

, (2 j−N2 +1≤
k ≤ 2 j−N1−1) if T = {0}.

iii) ϕT
j,k = ϕα

j,k+N2
, (−N2 +1≤ k ≤−N1−1),ϕT

j,k = ϕ j,k = 2 j/2ϕ(2 jx− k), (−N1 ≤ k ≤
2 j−N2) if T = {1}.

iv) ϕT
j,k = ϕα

j,k+N2
,(−N2 + 1 ≤ k ≤ −N1−1),ϕT

j,k = ϕ j,k = 2 j/2ϕ(2 jx− k), (−N1 ≤ k ≤
2 j−N2), ϕT

j,k = ϕβ
j,k−2 j+N2

(2 j−N2 +1≤ k ≤ 2 j−N1−1) if T = /0.

We conclude that the orthogonal projector PT
j from L2([0,1]) into V T

j ([0,1]) is given by

PT
j f = ∑

k∈DT
j

〈 f |ϕT
( j,k)〉ϕT

( j,k), (2.8)

and satisfies PT
j oPT

j+1 = PT
j+1 oPT

j = PT
j .

In the following, we establish the second goal of this paper. In fact, we should construct
a wavelet basis of the space Wj([0,1]) = Vj+1([0,1])∩ (Vj([0,1]))⊥. We denote by

Vj([N1,+∞[) = Vect{ϕ j,k/[N1,+∞[,ϕ j,k ∈Vj(R)}. (2.9)

Recall that the QMF condition gives that the mask of an orthonormal scaling function
must have an even number of coefficients. This means that N2−N1 is odd. We have the
first important result.
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Lemma 2.2. The functions ψ(x−k)/[N1,+∞[, N1−N2 +1≤ k≤−1
2(N2−N1 +1), belong to

V0([N1,+∞[).

Proof. The relations (2.1) and (2.3) gives

ϕ(2x) = aN1ϕ(x+
1
2

N1)+aN1+2ϕ(x+
1
2

N1 +1)+ ..+aN2−1ϕ(x+
1
2

N2− 1
2
) (2.10)

+bN1ψ(x+ 1
2 N1)+bN1+2ψ(x+ 1

2 N1 +1)+ ...+bN2−1ψ(x+ 1
2 N2− 1

2),
and

ϕ(2x−1)=aN1+1ϕ(x+
1
2

N1)+aN1+3ϕ(x+
1
2

N1 +1)+ ...+aN2−1ϕ(x+
1
2

N2− 1
2
) (2.11)

+bN1+1ψ(x+ 1
2 N1)+bN1+3ψ(x+ 1

2 N1 +1)+ ...+bN2−1ψ(x+ 1
2 N2− 1

2).

We replace now x by x+N2− 3
2 N1−1 in (2.10), then by x+N2− 3

2 N1−2, ... and finally,
by x+ 1

2(N2−2N1 +2). Recall that support of ϕ and ψ is [N1,N2], then, we obtain aN1ϕ(x+
N2−N1−1)+bN1ψ(x+N2−N1−1) = 0. Next aN1ϕ(x+N2−N1−2)+aN1+1ϕ(x+N2−
N1−1)+bN1ψ(x+N2−N1−2)+bN1+1ψ(x+N2−N1−1) = 0 until the last equation. We
conclude that the functions ψ(x− k)[N1,+∞[,N1−N2 +1≤ k ≤−1

2(N2−N1 +1), belong to
V0([N1,+∞[).

Lemma 2.3. The functions ψ(2 jx− k)[0,1], −N2 + 1 ≤ k ≤ −1
2(N2 + N1 + 1), belong to

Vj([0,1]).

Proof. By replacing x by 2 j(x−N1) and using Lemma 2.2, we obtain the result.

We reach the main result of this section

Theorem 2.3. For j≥ j0, the functions ϕ j,k/[0,1],−N2+1≤ k≤ 2 j−N1−1 and 2 j/2ψ(2 jx−
k)/[0,1],−1

2(N2+N1−1)≤ k≤ 2 j− 1
2(N2+N1+1) form a Riesz basis of the space Vj+1([0,1]).

Proof. Lemmas 2.2 and 2.3 immediately imply the main result of this section.

Remark 2.3. If we apply the results described above to the orthogonal multiresolution of I.
Daubechies, we obtain the Meyer’s lemma in [14].

We can obtain an orthogonal basis of Wj([0,1]). In fact, first we do corrections to the
functions ψ j,k/[0,1], −1

2(N2 + N1−1) ≤ k ≤ −N1−1 to get orthogonalilty to ϕα
i, j, (1 ≤ i ≤

N2−N1−1). Then, by using Gram-Schmidt for new functions, we get wavelets near 0. We
do the same thing for the functions ψ j,k/[0,1] 2 j−N2 + 1 ≤ k ≤ 2 j− 1

2(N2 + N1 + 1) to get
wavelets near 1. Moreover, the result of A. Jouini and P. G. Lemarié given in [9] allows to
construct the basis for every space Wj (orthogonal complement of Vj in Vj+1).

We will now construct an orthonormal basis of the space W T
j ([0,1]). We remark first

that dimW T
j ([0,1]) = 2 j. We denote by ∆T

j = {d ∈ DT
j+1/d /∈ DT

j }. The space W T
j ([0,1])

contains the functions ψ j,k,−N1 ≤ k ≤ 2 j −N2. We have (2 j − (N2−N1− 1)) functions
in W T

j ([0,1]). Then, we must construct (N2−N1− 1) functions. We denote by AT
j (I) =

V T
j (([0,1])⊕Vect{ψ j,k −N1 ≤ k ≤ 2 j −N2}. We see that, for −N1 ≤ k ≤ N2− 2N1− 2,
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ϕ j+1,k ∈ AT
j (I). We have the same treatment for ϕ j+1,2 j+1−N2

. We conclude that ϕ j+1,−N1+2k

and ϕ j+1,2 j+1−N2−2k, 0 ≤ k ≤ N2−N1−1
2 − 1 form a generating system of a supplement of

AT
j (I) in V T

j+1(I). Using Gram-Schmidt, we obtain an orthonormal basis ψT
j,k, k ∈ ∆T

j .
We conclude that the orthogonal projector QT

j from L2(I) into W T
j ([0,1]) is given by

QT
j f = ∑

k∈∆T
j

〈 f |ψT
( j,k)〉ψT

( j,k), (2.12)

and satisfies QT
j oQT

j+1 = QT
j+1 oQT

j = QT
j .

3 Biorthogonal multiresolution analysis on the interval [0,1]

First we give some definitions of biorthogonal multiresolution analysis on the interval [0,1],
and then we describe constructions on this interval.

Definition 3.1. A sequence (Vj,V ∗
j ) of closed subspaces of L2([0,1]) associated with a

biorthogonal multiresolution analysis (Vj(R),V ∗
j (R)) of L2(R) is called a biorthogonal mul-

tiresolution analysis of L2([0,1]) if

i) v j([0,1])⊂Vj ⊂Vj([0,1]) and v∗j([0,1])⊂V ∗
j ⊂V ∗

j ([0,1]).

ii) Vj ⊂Vj+1 and V ∗
j ⊂V ∗

j+1.

iii) L2([0,1]) = Vj⊕ (V ∗
j )⊥.

Let (Vj(R),V ∗
j (R)) be a biorthogonal multiresolution analysis of L2(R) with multiscale

functions (g,g∗). We assume that suppg=[N1,N2], and we denote by

Pα
i (x) = ∑

k≤−N1−1
kig(x− k), (3.1)

and
Pβ

i (x) = ∑
k≥−N2+1

kig(x− k). (3.2)

Our construction is based on the following result:

Theorem 3.1. We consider a biorthogonal multiresolution analysis (Vj(R),V ∗
j (R)) of L2(R),

(g,g∗) are the multiscale functions with compact support and (Vj,V ∗
j ) the associated biorthog-

onal multiresolution analysis of L2([0,1]). We assume that

i) g is differentiable and g
′
(x) =

∼
g(x)−∼

g(x−1).

ii) Vj contains the functions Pα
0, j(x)=Pα

0 (2 jx)[0,1] and Pβ
0, j(x)=Pβ

0 (2 jx−2 j)[0,1].

If we denote by
Ṽj = { f ∈ L2([0,1])/∃g ∈Vj, f = g

′}, (3.3)
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and
Ṽ ∗

j = { f ∈ L2([0,1]) / f
′ ∈V ∗

j , and f (0) = f (1) = 0}. (3.4)

Then (Ṽj,Ṽ ∗
j ) is a biorthogonal multiresolution analysis of L2([0,1]). Moreover, if we de-

note by Pj (resp
∼
P j) the projector from L2([0,1]) into Vj (resp. Ṽj) parallel to (V ∗

j )⊥ (resp

(
∼
Vj
∗
)⊥), then we have the following commutation property

d
dx

oPj = P̃jo
d
dx

. (3.5)

Proof. We clearly have g̃(x− k) = (∑∞
p=0 g(x− k− p))

′
and

(g̃∗(x− k))
′
= g∗(x− k +1)−g∗(x− k).

Then
∼
v j ⊂

∼
Vj([0,1]) and

∼
v j
∗ ⊂ ∼

Vj
∗
([0,1]). Moreover, since Vj contains the functions Pβ

0, j(x),

we have
∼
Vj([0,1])⊂ ∼

Vj and
∼
Vj
∗
([0,1])⊂ ∼

Vj
∗
. In the same way, we have

∼
Vj ⊂

∼
Vj+1

and ∼
V ∗

j ⊂
∼

V ∗
j+1.

To see the duality between
∼
Vj and

∼
V ∗

j , we consider a basis (α0 = 1,α1, ...,αn) of Vj with
dimVj = n+1 and a dual basis (β0,β1, ...,βn) of V ∗

j . Then the derivation is an isomorphism

from
∼

V ∗
j onto Vect(β1, ...,βn) and from Vect(α1, ...,αn) onto

∼
Vj. If we define

α̃i =
d
dx

αi and β̃i =−
∫ x

0
βi(t)dt,

then, by integration, we conclude that the bases (
∼
αi) and (

∼
βi) are biorthogonal and we have

a duality between
∼
Vj and

∼
V ∗

j . Finally, the commutation property is satisfied. In fact, we
have

d
dx

o(Pj f ) =
d
dx
〈 f ,β0〉1+

n

∑
i=1
〈 f ,βi〉 d

dx
αi ,

=
n

∑
i=1
〈 f ,βi〉α̃i ,

and

P̃j o(
d
dx

f ) =
n

∑
i=1
〈 d
dx

f , β̃i〉α̃i ,

=
n

∑
i=1

(
[

f β̃i

]1

0
+ 〈 f ,βi〉)α̃i ,

=
n

∑
i=1
〈 f ,βi〉α̃i .
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Corollary 3.1. Let Vj(R) be the orthogonal multiresolution analysis of L2(R) with the
scaling function ϕ of class Cm (m ∈ N∗). We denote by V (m)

j (R) and V ∗(m)
j (R) the mul-

tiresolution analysis constructed by m derivations and m integrations. Then V (m)
j ([0,1])

and V ∗(m)
j ([0,1])∩Hm

0 ([0,1]) form a biorthogonal multiresolution analysis of L2([0,1]).

Moreover, if we denote by P(m)
j the projector on V (m)

j ([0,1]) parallel to [V ∗(m)
j ([0,1])∩

Hm
0 ([0,1])]⊥, we have

d
dx

oP(m)
j = P

(m+1)
j o

d
dx

. (3.6)

We can apply the method described in section 2 to construct Riesz bases of the spaces
V (m)

j ([0,1]) and V ∗(m)
j ([0,1])∩Hm

0 ([0,1]). In fact, we define g and g∗ by

(1− e−iξ)mf
g(ξ) = (iξ)mf

ϕ(ξ), (3.7)

and

(iξ)m
f
g∗(ξ) = (eiξ−1)mf

ϕ(ξ). (3.8)

The functions g j,k[0,1] form a basis of V (m)
j ([0,1]). To construct a basis of V ∗(m)

j ([0,1])∩
Hm

0 ([0,1]) we take the functions g j,k with support in [0,1] and the boundaries functions
defined by

gα∗
j,k =

−N1+m−1

∑
p=−N2+1

αi, j,pg∗j,p/[0,1],1≤ i≤ N2−N1−1, (3.9)

and

gβ∗
j,k =

2 j−N1+m−1

∑
p=2 j−N2+1

αi, j,pg∗j,p/[0,1],1≤ i≤ N2−N1−1. (3.10)

The real constants αi, j,p are determined by the following conditions: for 1≤ i≤ N2−N1−
2),∫ +∞

0 (∑−N1+m−1
p=−N2+1 αi, j,p2

j
2 g∗(2 jx− p)2

j
2 g(2 jx+N2−N1−m−q)dx = δi,q.

We define
V T

j ([0,1]) = { f ∈Vj([0,1])/ f |T = 0}
where T ⊂ {0,1} and j ≥ j0. We obviously have

V T
j ([0,1])⊂V T

j+1([0,1]).

We shall construct a subspace V ∗T
j ([0,1]) of V ∗

j ([0,1]) such that V ∗T
j ([0,1]) ⊂ V ∗T

j+1([0,1])
and V T

j ([0,1]) and V ∗T
j ([0,1]) are in duality for the scalar product on [0,1]. A direct method

as in the previous section gives the basis of V T
j ([0,1]). A basis of V ∗T

j ([0,1]) is given by
the functions ϕ∗j,k with compact support in [0,1] and we add boundaries functions in a way
similar in [9]. Using the Gram-Schmidt orthogonalization, we obtain biorthogonal bases of
V T

j ([0,1]) and V ∗T
j ([0,1]). More precisely, Theorem 3.1 and Corollary 3.1 give a biorthog-

onal multiresolution analysis (V (m),T
j ([0,1]), V ∗(m),T

j ([0,1])) of L2([0,1]) and furthermore a

straightforward computation yields d
dx oP(m),T

j = P(m+1),T o d
dx .

A method similar to that used in the previous section shows that dual bases of W T
j ([0,1])

and W ∗T
j ([0,1]) are given by : ψZ

( j,k) and ψ∗Z
( j,k) for k ∈ ∆T

j .



54 H. Bibi, A. Jouini, and M. Kratou.

4 The study of regular spaces of functions on the interval [0,1]

In this section, we give some applications of the multiresolution analysis on the interval
[0,1] described above. In fact, we study regular spaces of functions (Sobolev spaces) on the
interval [0,1].

We denote by
• Vj(R) : an orthogonal multiresolution analysis of L2(R) with the associated scaling

function ϕ of class Cm+ε on R (m ∈ N∗).
• V (m)

j (R) : the multiresolution analysis constructed by derivation and g the function in

V (m)
0 (R) defined by

(1− e−iξ)mf
g(ξ) = (iξ)df

ϕ(ξ).

• V ∗(m)
j (R) : the multiresolution analysis constructed by integration and g∗ the function

in V ∗(m)
0 (R) defined by

(iξ)m
f
g∗(ξ) = (eiξ−1)df

ϕ(ξ).

• V (m)
j = V (m)

j ([0,1]) and V ∗(m)
j = V ∗(m)

j ([0,1])∩Hm
0 ([0,1]).

• (V (m)
j ,V ∗(m)

j ) forms a biorthogonal multiresolution analysis of L2([0,1]).

•W (m)
j = V (m)

j+1∩ (V ∗(m)
j )⊥ and W ∗(m)

j = V ∗(m)
j+1 ∩ (V (m)

j )⊥,

Proposition 4.1. Let P(m)
j be the projector on V (m)

j parallel to (V ∗(m)
j )⊥ and P∗(m)

j its ad-

joint. We define Q(m)
j = P(m+1)

j −P(m)
j , Q∗(m)

j = P∗(m)
j+1 −P∗(m)

j and let j0 be an integer satis-
fying 2 j0 −1≥ 2N2−2N1−2+2m. Then we have the following commutation properties

d
dx

(P(m)
j f ) = P(m+1)

j (
d f
dx

) if f ∈ H1([0,1]), (4.1)

and
d
dx

(P∗(m+1) f ) = P∗(m)
j (

d f
dx

) if f ∈ H1
0 ([0,1]). (4.2)

Proof. To prove this Proposition, it is enough to remark that if f ∈ H1([0,1]) and g ∈
H1

0 ([0,1]), then we have
〈Pj f ,g〉L2([0,1]) = 〈 f ,P∗j g〉

and
〈d f

dx
,g〉=−〈 f ,

dg
dx
〉.

We can now establish the main result of this section.

Theorem 4.1. Assume that ϕ is a Cp+ε -function, p ∈ N∗, p ≥ m, ε > 0 and let j0 be an
integer satisfying 2 j0 −1≥ 2N2−2N1−2+2p. Then we have

i) for f ∈ L2([0,1]), ‖ f‖2 ≈ ‖P(m)
j0 f‖2 +(∑ j≥ j0 ‖Q(m)

j f‖2
2)

1
2 .

ii) For f ∈ L2([0,1]), ‖ f‖2 ≈ ‖P∗(m)
j0 f‖2 +(∑ j≥ j0 ‖Q∗(m)

j f‖2
2)

1
2 .
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iii) For s ∈ Z such that −m≤ s≤ p−m, we have

- f ∈ Hs([0,1])⇔ P(m)
j0 f ∈ L2([0,1]) and ∑ j≥ j0 4 js‖Q(m)

j f‖2
2 < +∞.

- f ∈ H−s
0 ([0,1])⇔ P∗(m)

j0 f ∈ L2([0,1]) and ∑ j≥ j0 4 js‖Q∗(m)
j f‖2

2 < +∞.

Proof. The proof of this Theorem is classical in the wavelet theory. We obtain the direct
inequalities in i) and ii) from the vaguelette Lemma [10] and the inverse inequalities by
duality. The equivalences in iii) are immediate because if f ∈ Hs([0,1]) then its norm is
equal to || f ||2 + || f (s)||2 . We set

f = P(m)
j0 f +

∞

∑
j= j0

Q(m)
j f ,

then, we have

|| f ||2 ≈ ||P(m)
j0 f ||2 +(

∞

∑
j= j0

||Q(m)
j f ||22) f rac12,

f (s) = (
d
dx

)s(P(m)
j0 f +

∞

∑
j= j0

Q(m)
j f ) = P(m+s)

j0 f (s) +
∞

∑
j= j0

Q(m+s)
j f (s),

and

|| f (s)||2 ≈ ||p(m+s)
j0 j0 f (k)||2 +(

∞

∑
j= j0

||Q(m+s)
j f (s)||22)

1
2 .

thus, we obtain

||P(m+s)
j0 f (s)||2 = ||( d

dx
)s(P(m)

j0 f )||2 ≤C||P(m)
j0 f ||2,

and

‖Q(m+s)
j f (s)‖2 = ‖( d

dx
)s(Q(m)

j f )||2 ≈ 2 js||Q(m)
j f ||2.

Then the characterization of Hs([0,1]) is immediate. We characterize in the same way
the spaces Hs

0([0,1]).

If we apply the same method described above for the biorthogonal multiresolution anal-
ysis (V (m),T

j ([0,1]),V ∗(m),T
j ([0,1])), then corollary 3.1 and classical wavelet theory give the

same result for the space Hs,T ([0,1]) = { f ∈ Hs([0,1]) / f (p)|T = 0, 0≤ p≤ s−1} .
We have the equivalent results for Besov spaces.
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5 Conclusion

In this paper, we have described more general constructions of compact wavelet bases on
the interval. More precisely, we have constructed orthogonal and biorthogonal systems on
[0,1] which are provided by dyadic translations and dilatations of a finite number of basic
functions. By derivation and integration, we obtain new regular multiresolution analyses on
the interval [0,1] which satisfy the commutation properties (4.1) and (4.2). We then deduced
that these analyses are well adapted to study Sobolev spaces Hs([0,1]) and Hs,T ([0,1])
(s ∈ Z).
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