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Problem: what simple verifiable condition for the CLT for general

quadratic form of linear variables

Sums Assume that (Xt) is a stationary linear process

Xt =
∞∑

j=0

ψjεt−j,

where (εt) is a sequence of i.i.d. (0,1) variables

Eεt = 0, Eε2t = 1

ψj real
∞∑

j=0

ψ2
j < ∞.

Dependence: Variables Xt can be weakly and strongly dependent



Asymptotic theory for the sums: If

Sn =
n∑

j=1

Xj, and V ar(Sn) →∞

then (Well known (Ibragimov, Linnik (1964)):

Sn − E[Sn]√
V ar(Sn)

→ N(0,1).

Note: no additional conditions needed,

Quadratic forms in i.i.d. variables

Question: can we have something like that for quadratic forms?

Answer: Yes, for i.i.d variables Xt = εt. Set



Tn =
n∑

t,s=1

an(t, s)εtεs

An = (an(t, s)) real symmetric matrix

Question: Does

V ar(Tn) →∞

implies CLT for Tn?

Answer: Almost: we need slightly stronger condition:

Denote



||An|| = (
∑n

t,k=1 an(t, s)2)1/2 Euclidean norm

||An||sp = max||x||=1 ||Anx|| spectral norm

CLT in zero diagonal case: an(t, t) = 0

Sufficient condition:

||An||sp
||An||

→ 0, n →∞.

Then

Tn − E[Tn]√
V ar(Tn)

→ N(0,1).



Discussed by: Rotar (1973), Jong (1987), Guttorp and Lockhart

(1988), Mikosch (1991)

Note: 1. Condition implies CLT if ||Tn|| ≤ C,

V ar(Tn) = 2||Tn||2 →∞

2. Only second finite moment is needed: Eε2t < ∞.

CLT in non-zero diagonal case: an(t, t) 6= 0. More subtle, we

discuss it later

Asymptotic theory for quadratic forms

Assume now that Xt are dependent linear variables



Objectives: 1. asymptotic normality theory for quadratic form

Qn,X in dependent linear random variables Xt

Qn,X =
n∑

k,t=1

dn(k − t)XkXt

2. for the use in kernel, and other estimators converging at a rate

not necessarily

n1/2.

3. suitable for all types of dependence (long, short and negative

memory) of Xt

4. conditions should be easy to verify



Known results for dependent Xk

1. The case dn(t) ≡ d(t). Conditions for CLT with normalization√
n were derived in

Fox and Taqqu (1987), Avram (1988), Giraitis and Surgailis (1990)

and others

4 finite moments needed, EX4
t < ∞, Eε4t < ∞

Note Direct verification of CLT when dn(t) depends on n is diffi-

cult.

We wish to allow slow growth of V ar(Qn,X) = o(n), to cover kernel

estimation.



Method: we approximate Qn,X by a quadratic form

Qn,ε =
n∑

k,t=1

en(k − t)εkεt,

in i.i.d. variables εt (innovations of {Xt}

Note: The existing research, based on this method,

Phillips and Solo (1992), Mikosch (1995), Kokoszka and Taqqu

(1996) deals with the case

dn(t) ≡ d(t), four moments

It provides only the bound

V ar(Qn,X −Qn,ε) = o(n)



and CLT with normalization
√

n. Not good enough, to cover the

case V ar(Qn,X) = o(n).

Our approach:

1. Write

Qn,X = Qn,ε + [Qn,X −Qn,ε]

2. Use CLT for Qn,ε with non-vanishing diagonal

3. Main technical problem: show that

Qn,ε dominates [Qn,X −Qn,ε]

we need very sharp upper bound for

[Qn,X −Qn,ε]



Assumptions on Xt (linear process)

Xt =
∞∑

j=0

ψjεt−j.

Property: There exists d ∈ (−1/2,1/2) such that ψj satisfy

ψj = O(j−1+d), |ψj − ψj+1| = O(j−2+d), if d 6= 0

and,
∑∞

j=0 ψj = 0, if d < 0.

If d = 0, then there exists α > 1 such that

∞∑

j=n

|ψj| = O(n−α).



Example: the above property holds if {Xt} is a defined by

(1− L)dA(L)Xt = εt, A(L) =
∞∑

j=0

ajL
j

where −1/2 < d < 1/2 is memory parameter, L is the lag operator,

and AR coefficients decay fast:

aj = O(rj), for some 0 < r < 1.

For example, ARFIMA(p,d,q) models. Then {Xt} has spectral

density

f(λ) = (2π)−1|
∞∑

j=0

ψje
−iλj|2

with property

f(λ) = |λ|−2d(b0 + O(|λ|2)), λ → 0.



Question: how to construct the approximating quadratic form

Qn,Zε?

Denote by

In(λ) =
1

2πn
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Xje
iλj
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, In,ε(λ) =
1

2πn
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εje
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periodograms of {Xt} and {εt}.

Under

Assumption on dn(t): there exist a real even function ηn(λ) such

that

dn(t) =
∫ π

−π
ηn(λ)eiλtdλ



we can write

Qn,X =
n∑

k,t=1

dn(k − t)XkXt ≡ (2πn)
∫ π

−π
ηn(λ)In(λ)dλ

Bartlett decomposition

In(λ) = 2πf(λ)In,ε(λ) + ”small term”

suggests that we can write

Qn,X = Qn,ε + ”small term”

where

Qn,ε =
n∑

k,t=1

en(k − t)εkεt ≡ (2πn)
∫ π

−π
ηn(λ)2πf(λ)In,ε(λ)dλ

here

en(t) =
∫ π

−π
(2πηn(λ)f(λ))eiλtdλ.



Approximation of Qn,X :

Objective: to derive sharp upper bounds of

Var(Qn,X −Qn,ε) and E|Qn,X −Qn,ε|

Assumption on ηn(λ): There exists −1 < β < 1 and kn ≥ 0,

|ηn(λ)| ≤ kn|λ|−β, λ ∈ [−π, π], n ≥ 1.

Note that the weight function in approximating form Qn,ε, has the

bound

|ηn(λ)|f(λ) ≤ Ckn|λ|−(2d+β), λ → 0

Main approximation result



Theorem 2.1 Assume that

δ := 2d + β < 1/2.

(i) If Eε4t < ∞, then

[Var(Qn,X −Qn,ε)]
1/2 = O(rn)

where

rn =
{

kn, if d = 0,

knnmax(δ,0) logn, if d 6= 0.

(ii) If Eε2t < ∞, then

E|Qn,X −Qn,ε| = O(r̄n)

where

r̄n =
{

kn, if d = 0,

knnmax(δ,d,0) logn, if d 6= 0



(Note that rn ≤ r̄n.)

Comment: 1. Approximation rate depends on δ = 2d+β. It allows

memory compensation (d positive, β negative)

2. kn plays a secondary role

3. Approximation precision is very high when δ is small or negative

4. In some case existing results are improved by n−1/2. For

example, if d = 0, ηn(λ) ≡ η(λ) and β = 0, then Brockwell and

Davis (1991) approximation is

[Var(Qn,X −Qn,ε)]
1/2 = o(n1/2)

Derived approximation is

[Var(Qn,X −Qn,ε)]
1/2 = O(1)



Central Limit theorem for Quadratic forms

To derive the CLT for Qn,X we have to

1. assume that the main term Qn,ε dominates the approximation

error.

2, Use CLT for Qn,ε

Notations: denote En the matrix En = (en(t− k))t,k=1,...,n

||En|| = (
∑n

t,k=1 e2n(t− k))1/2 Euclidean norm.

Recall

|ηn(λ)| ≤ kn|λ|−β



Theorem 2.2 Assume that β + 2d < 1/2 and Eε4t < ∞. Suppose

that
kn

||En||
→ 0, when d = 0

knnmax(β+2d,0) logn

||En||
→ 0, when d 6= 0

then,

Var(Qn,X)/Var(Qn,ε) → 1, Var(Qn,X) ³ ||En||2

and

(Var(Qn,X))−1/2(Qn,X − EQn,X)
d→ N(0,1).

Note: conditions of the CLT are comparable to those of the clas-

sical CLT in case of i.i.d. variables



Statistical applications involve the integrated periodograms

Tn,X =
∫ π

−π
ηn(λ)In(λ)dλ

Theorem 2.3 gives conditions when centering ETn,X can be re-

placed by explicit constant

ETn,ε =
∫ π

−π
ηn(λ)f(λ)dλ.

Recall that δ = β + 2d,

r̄n =
{

kn, if d = 0,

knnmax(δ,d,0) logn, if d 6= 0

Theorem 2.3. Assume that δ < 1/2 and

r̄n

||En||
→ 0



(i) If Eε4t < ∞, then

[Var(Tn,X)]−1/2(Tn,X −
∫ π

−π
ηn(λ)f(λ)dλ)

d→ N(0,1).

(ii) If

Eε2+δ
t < ∞ and

∫ π

−π
ηn(λ)f(λ)dλ = o(n−1/2||En||)

then

Var(Tn,X) =
||En||2
2(πn)2

(1 + o(1))

and √
2πn

||En|| (
Tn,X −

∫ π

−π
ηn(λ)f(λ)dλ)

d→ N(0,1).



(iii) If

Eε2t < ∞ and
∫ π

−π
ηn(λ)f(λ)dλ ≡ 0

then √
2πn

||En|| (
Tn,X −

∫ π

−π
ηn(λ)f(λ)dλ)

d→ N(0,1).

Discussion of the results

Assumption on weights ψj can be replaced by a stronger condition

Assumption. There exists d ∈ (−1/2,1/2) and a constant c 6= 0

such that

ψj =

{
cj−1+d(1 + O(j−1)), if d ∈ (0,1/2),

cj−1+d(1 + O(j−1)) and
∑∞

j=0 ψj = 0, if d ∈ (−1/2,0).



Comment: 1. Assumption motivated by common time series mod-

els

2. It implies that the spectral density

f(λ) = c|λ|−2d(1 + o(1)), as λ → 0,

3. Assumption |ηn(λ)| ≤ kn|λ|−β is weak, easy to check

4. In case kn ≡ K, 2d + β ≤ 0 (for example, d = 0, β = 0), the

bound

E|Qn,X −Qn,ε| = O(logn),

is a much sharper bound than

E|Qn,X −Qn,ε| = O(n1/2),



in Brockwell and Davis (1991), Kokoszka and Taqqu (1996,97)

5. In case ηn(λ) ≡ η(λ), Taqqu, Fox (1986), Giraitis and Surgailis

(1991) used the same condition

2d + β < 1/2

If 2d + β > 1/2 CLT might not hold.

6. Applications show that CLT in kernel estimation, instead of 4,

requires only 2+δ moments

Eε2+δ
t < ∞

7. In applications, the main term Qn,ε dominates the reminder

Qn,X −Qn,ε, and allows

V ar(Qn,X) = o(n).



CLT for quadratic forms of i.i.d. random
variables

Problem: asymptotic normality result is based on approximation

result, and normality of Qn,ε.

Consider the general quadratic form

Tn =
n∑

t,k=1

an(t, k)εtεk

where An = (an(t, k))t,k=1,...,n a real symmetric matrix.

Comment: The case of zero diagonal an(t, t) = 0 is well investi-

gated. Next theorem allows non-zero diagonal

Theorem 4.1 Assume that

||An||sp
||An||

→ 0.



(i)[Non-zero diagonal]. If Eε4t < ∞, then

(V ar(Tn))
−1/2(Tn − ETn)

d→ N(0,1).

(ii) [Vanishing Diagonal] If

Eε2+δ
t < ∞ (for some δ > 0) and

n∑

t=1

a2
n(t, t) = o(||An||2),

then
1√

2||An||
(Tn − ETn)

d→ N(0,1).

(iii) [Zero diagonal] If

Eε2t < ∞ and an(t, t) = 0, t = 1, ..., n,

then CLT(ii) is valid



Special case: An is a Toeplitz matrix with entries

an(t, k) =
∫ π

−π
ei(t−k)xgn(x)dx, t, k = 1, ..., n,

where gn(x), |x| ≤ π is an even real function.

Theorem 4.2 Let An be a Toeplitz matrix and for some 0 ≤ α < 1

|gn(λ)| ≤ kn|λ|−α, n ≥ 1.

(i) Then

||An||sp ≤ Cknnα n ≥ 1.

(ii) If

knnα

||An||
→ 0

then

||An||sp
||An||

→ 0.



Comment: 1. If |gn(λ)| ≤ C, and V ar(Tn) →∞, then Tn satisfies

CLT.

2. Condition on g is precise. For example, if

gn(x) = |x|−α, 0 ≤ α < 1

then

||An|| ∼ nmax(1/2,α).

Hence, a) for 0 ≤ α < 1/2,

||An||sp
||An||

≤ Cnα−1/2 → 0

and CLT holds.

b) if 1/2 < α < 1, then non-CLT holds ( Giraitis, Taqqu, Terrin

(1998))



Applications

CLT for quadratic forms is one of the main tools in inference of

time series

A number of estimators/tests can be written as a quadratic form

Qn,X (integrated periodogram with kernel ηn(λ)

Important applications:

1. spectral estimation

2. kernel estimation

3. Whittle estimation

4. goodness-of-fit test



Example of application in kernel estima-
tion

Illustration. Assume that {Xt} is a linear short memory sequence

with d = 0.

We estimate f(0) using kernel estimator

f̂(0) =
∫ π

−π
ηn(λ)In(λ)dλ

where

ηn(λ) = (2πq)−1|
q∑

j=1

eijλ|2

is the Fejér kernel.

The estimator f̂(0) uses the Bartlett window. The bandwidth

q →∞, q = o(n), as n →∞.



Existing results: Anderson (1994), Theorem 9.4.1, shows that

(n/q)1/2(f̂(0)− Ef̂(0)) → N(0, V 2)

It assumes finite fourth moment

Eε4t < ∞.

Note: 1. Centering by E[f̂(0)] is not convenient,

2. analysis of the bias f(0)− E[f̂(0)] difficult.

Our results: 1. imply asymptotic normality of f̂(0):

a) under 2 + δ moments, Eε2+δ
t < ∞.

b) allows simple deterministic centering



Assumptions: Assume that f is continuous and

f(λ) = f(0) + O(λ2), as λ → 0.

Since

|ηn(λ)| ≤ Cq

then

|ηn(λ)| ≤ kn|λ|−β

So,

kn = Cq, β = 0, and δ = β + 2d = 0.

It is straightforward to check that

||En||2 =
n∑

t,k=1

e2n(t− k) =
∫ π

−π
|

n∑

j=1

eit(x+y)|2ηn(x)f(x)ηn(y)f(y)dxdy



∼ qn (8/3)π2f(0)2,

Then
r̄n

||En||
=

kn

||En||
∼ C

q√
qn

= C

√
q√
n
→ 0.

Since f is continuous, then

∫ π

−π
ηn(λ)f(λ)dλ = (2πq)−1

∫ π

−π
|

q∑

j=1

eijλ|2f(λ)dλ → f(0) = o(n−1/2||En||)

since n−1/2||En|| ∼ cq1/2 →∞. Hence

(n/q)1/2(f̂(0)−
∫ π

−π
ηn(x)f(x)dx)

d→ N(0,
4

3
f2(0)).

Note: this convergence does not follow from any existing CLT’s

for quadratic forms of linear processes because



a) it involves rate of convergence different than
√

n

b) function ηn depends on n.

c) condition f(λ) = f(0)+O(λ2) allows to obtain the upper bound

of the bias:
∫ π

−π
ηn(x)f(x)dx− f(0) = O(q−1).


