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(2) Laboratoire de Probabilités et Statistique, Université Paris
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Continuous time model

 d log(St) =
√
VtdWt,

dVt = bc(Vt)dt+ σc(Vt)dBt

where (Wt, Bt) is a 2-dim standard Brownian Motion,

and Vt is a positive diffusion process.

Observations: (Ziδ)1≤i≤n for Zt = log(St) and kδ = ∆, n = kN .

Assumptions: Diffusion in stationary regime.

but non independent underlying sequence ⇒ geometrically

β-mixing r.v.’s

Aim: Estimate bc (and σ2
c ), without observing V but only

Zt = log(St) and provide risk bounds.
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Ideas of the estimation strategy:

1) The realized quadratic variation associated with

(Zℓδ)ik+1≤ℓ<(i+1)k:

ˆ̄Vi =
1

kδ

k−1∑
j=0

(
Z(ik+j+1)δ − Z(ik+j)δ

)2
.

provides an approximation of the integrated volatility (∆ = kδ)

V̄i =
1

∆

∫ (i+1)∆

i∆

Vsds. (1)

2) If one observes (Yi, Xi) with Yi = f(Xi) + εi where εi = noise,

then nonparametric mean square contrasts → good estimation

of f .
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Find the regression equation.

Suppose we observe directly the (Vi∆), then, we can write:

V(i+1)∆ − Vi∆

∆
=

1

∆

∫ (i+1)∆

i∆

dVs =
1

∆

∫ (i+1)∆

i∆

bc(Vs)ds+
1

∆

∫ (i+1)∆

i∆

σc(Vs)dWs

= bc(Vi∆)+
1

∆

∫ (i+1)∆

i∆

σc(Vs)dWs︸ ︷︷ ︸
noise

+
1

∆

∫ (i+1)∆

i∆

[bc(Vs)− bc(Vi∆)]ds︸ ︷︷ ︸
Residual term

.

This regression of the
V(i+1)∆ − Vi∆

∆
on the Vi∆ allows to estimate

bc (see Comte et al. (2007)).

Mixing sequences − Martingale properties − ∆, δ small.
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Suppose we observe the (V̄i)

V̄i =
1

∆

∫ (i+1)∆

i∆

Vsds,

then, we can write

V̄i =
1

∆

∫ (i+1)∆

i∆

Vsds =
1

∆

∫ (i+1)∆

i∆

(
Vi∆ +

∫ s

i∆

dVu

)
ds

= Vi∆ +
1

∆

∫ (i+1)∆

i∆

[(i+ 1)∆− u]dVu.

So we have

V̄i+1 − V̄i

∆
=

V(i+1)∆ −Vi∆

∆
+

1

∆2

[∫ (i+2)∆

(i+1)∆

((i+ 2)∆− u)dVu

+

∫ (i+1)∆

i∆

(u− (i+ 1)∆)dVu

]
.
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ψi∆(u) = (u− i∆)1I[i∆,(i+1)∆[(u) + [(i+ 2)∆− u]1I[(i+1)∆,(i+2)∆[(u)

V̄i+1 − V̄i

∆
= b(Vi∆)+

1

∆2

∫ (i+2)∆

i∆

ψi∆(u)σc(Vu)dWu︸ ︷︷ ︸
noise

+
1

∆2

∫ (i+2)∆

i∆

ψi∆(u)[bc(Vu)− bc(Vi∆)]du︸ ︷︷ ︸
residual

.

Recall now

ˆ̄Vi =
1

kδ

k−1∑
j=0

(
Z(ik+j+1)δ − Z(ik+j)δ

)2
is an approximation of V̄i (∆ = kδ).
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Last step: quadratic variations ( ˆ̄Vi) built using our effective

observations (kδ = ∆):

ˆ̄Vi = V̄i + ui,k,

where

ui,k =
1

∆

k−1∑
j=0

(∫ (ik+j+1)δ

(ik+j)δ

√
VsdBs

)2

−
∫ (ik+j+1)δ

(ik+j)δ

Vsds

 .
This yields

Hi =
ˆ̄Vi+1 − ˆ̄Vi

∆
=
V̄i+1 − V̄i

∆
+
ui+1,k − ui,k

∆
.
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Finally, we obtain the development,

Hi+1 = bc(
ˆ̄Vi) + Zi+1 +R(i+ 1), (2)

where Zi+1 is a noise term (with martingale properties):

Zi+1 =
1

∆2

∫ (i+3)∆

(i+1)∆

ψ(i+1)∆(u)σc(Vu)dWu + (ui+2,k − ui+1,k)/∆,

and R(i+ 1) is a sum of negligible residual terms given by

R(i+1) = [bc(V(i+1)∆)−bc( ˆ̄Vi)]+
1

∆2

∫ (i+3)∆

(i+1)∆

ψ(i+1)∆(s)(bc(Vs)−bc(V(i+1)∆))ds.

The lag in (2) is to avoid some cumbersome correlations.
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Spaces of approximation

bc is estimated only on a compact subset A of the state space of

(Vt). For simplicity

A = [0, 1], and we set bA = bc1A. (3)

Estimation strategy (model selection):

1) Take a family Sm,m ∈ Mn of finite dim. subspaces of L2([0, 1])

2) Compute a collection of estimators b̂m where for all m, b̂m ∈ Sm.

3) Data driven procedure chooses among the collection of

estimators the final estimator b̂m̂.
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Here : Trigonometric spaces, Sm,m ∈ Mn.

Sm = Span(φ1, . . . , φ2m+1) ⊂ L2([0, 1]) with

φ1(x) = 1[0,1](x),

φj(x) =
√
2cos(2πjx)1[0,1](x) for even j’s

φj(x) =
√
2sin(2πjx)1[0,1](x) for odd j’s, j > 1.

Dimension Dm = 2m+ 1 = dim(Sm) ≤ Dn and

Mn = {1, 3, . . . ,Dn}.

Largest space in the collection has maximal dimension Dn.

For all x ∈ [0, 1],
∑2m+1

j=1 φ2
j (x) = 2m+ 1 = Dm.

Thus, for any function t ∈ Sm, supx∈[0,1] |t(x)|2 ≤ Dm

∫ 1

0
t2(x)dx.
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For each m, and for a function t ∈ Sm, we introduce the following

contrast:

γN(t) =
1

N

N−1∑
i=0

[Hi+1 − t( ˆ̄Vi)]
2. (4)

Then the mean squares estimators are defined as

b̂m = arg min
t∈Sm

γN(t). (5)

ˆ̄Vi =
1

kδ

k−1∑
j=0

(
Z(ik+j+1)δ − Z(ik+j)δ

)2
, Hi =

ˆ̄Vi+1 − ˆ̄Vi
∆

.

Observations Zℓδ from

 dZt = d log(St) =
√
VtdWt,

dVt = bc(Vt)dt+ σc(Vt)dBt
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Well defined, the vector: (b̂m( ˆ̄V1), . . . , bm( ˆ̄VN )) and

E

[
1

N

N−1∑
i=0

(b̂m( ˆ̄Vi)− bA(
ˆ̄Vi))

2

]
.

Thus, the error is measured via the risk E(∥b̂m − bA∥2N ) where

∥t∥2N =
1

N

N−1∑
i=0

t2( ˆ̄Vi). (6)
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Assumptions.

Assume that the state space of (Vt) is a known open interval (r0, r1)

of R+, I = [r0, r1] ∩ R and

[A1 ] 0 ≤ r0 < r1 ≤ +∞,
◦
I = (r0, r1), with σc(v) > 0, for all v ∈

◦
I .

bc ∈ C1(I), b′c bounded on I,

σ2
c ∈ C2(I), (σ2

c )
′σ Lipschitz on I, (σ2

c )
′′ bounded on I and

σ2
c (v) ≤ σ2

1 ,∀v ∈ I.

[A2 ] ∀v0, v ∈
◦
I , scale density s(v) = exp

[
−2
∫ v

v0
bc(u)/σ

2
c (u)du

]
satisfies

∫
r0
s(x)dx = +∞ =

∫ r1 s(x)dx; speed density

m(v) = 1/(σ2
c (v)s(v)) satisfies

∫ r1
r0
m(v)dv =M < +∞.

[A3 ] η ∼ π, ∀i,E(ηi) <∞, where π(v)dv = (m(v)/M)1I(r0,r1)(v)dv.

Under [A1]-[A3], (Vt) is strictly stationary with marginal

distribution π, ergodic and β-mixing, i.e. limt→+∞ βV (t) = 0.
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To prove our main result, we need the following stronger mixing

condition:

[A4 ] The process (Vt) is exponentially β-mixing, i.e., there exist

constants K > 0, θ > 0, such that, for all t ≥ 0, βV (t) ≤ Ke−θt.

[A4] satisfied in most standard examples.

Under [A1]-[A4], for fixed ∆, (V̄i)i≥0 is a strictly stationary process.

And we have:

Proposition 1 Under [A1]-[A4], for fixed k and δ, ( ˆ̄Vi)i≥0 is

strictly stationary and β ˆ̄V
(i) ≤ cβV(i∆) for all i ≥ 1.
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[A5 ] The process ( ˆ̄Vi)i≥0 admits a stationary density π∗ and

there exist two positive constants π∗
0 and π∗

1 (independent of

n, δ) such that ∀m ∈ Mn, ∀t ∈ Sm,

π∗
0∥t∥2 ≤ E(t2( ˆ̄V0)) ≤ π∗

1∥t∥2. (7)

The existence of the density π∗ is easy to obtain.

The checking of (7) is more technical.

∥t∥2π∗ =

∫
t2(x)π∗(x)dx, ∥t∥2 =

∫ 1

0

t2(x)dx and ∥t∥∞ = sup
x∈[0,1]

|t(x)|.

For a deterministic function E(∥t∥2N) = ∥t∥2π∗ =
∫
t2(x)π∗(x)dx.

Under [A5], norms ∥.∥ and ∥.∥π∗ are equivalent for functions in

Sm
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Proposition 2 Assume that N∆ ≥ 1 and 1/k ≤ ∆. Assume that

[A1]-[A5] hold and consider a model Sm in the collection of models

with Dn ≤ O(
√
N∆/ ln(N)) where Dn is the maximal dimension.

Then the estimator b̂m of b is such that

E(∥b̂m − bA∥2N) ≤ 7∥bm − bA∥2π∗ +K
E(σ2(V0))Dm

N∆
+K′∆,

where bA = b1I[0,1], bm is the orthogonal projection of b on Sm and

K and K ′ are some positive constants.

Note that the condition on Dn implies that
√
N∆/ ln(N) must be

large enough.
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Rates.

If bA ∈ Bα,2,∞([0, 1]), α ≥ 1, and ∥bA∥α,2,∞ ≤ L.

and ∥bm − bA∥2π∗ ≤ π∗
1∥bm − bA∥2

Choose Dm = (Nn∆n)
1/(2α+1), we obtain

E(∥b̂m − bA∥2n) ≤ C(α,L, π∗
1)(Nn∆n)

−2α/(2α+1) +K′∆n.

(Nn∆n)
−2α/(2α+1) = T−2α/(2α+1)

n

= the optimal nonparametric rate proved by

Hoffmann (1999) for direct observations of V .

Second term: study of cases in which it is negligible.
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Model selection

m̂ = arg min
m∈Mn

[
γn(b̂m) + pen(m)

]
, (8)

with pen(m) a penalty to be properly chosen. We denote by b̃ = b̂m̂

the resulting estimator and we need to determine pen such that,

ideally,

E(∥b̃−bA∥2N ) ≤ C inf
m∈Mn

(
∥bA − bm∥2 + E(σ2(V0))Dm

N∆

)
+ negligible terms,

with C a constant which should not be too large.
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We almost reach this aim for the estimation of b.

Theorem 1 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and

N∆ ≥ 1. Consider the collection of models with maximal dimension

Dn ≤ O(
√
N∆/ ln(N)). Then the estimator b̃ of b where m̂ is

defined by (8) with

pen(m) ≥ κσ2
1

Dm

N∆
, (9)

where κ is a universal constant, is such that

E(∥b̃− bA∥2N ) ≤ C inf
m∈Mn

(
∥bm − bA∥2π∗ + pen(m)

)
+K

(
∆+

1

N∆
+

1

ln2(N)k∆

)
.
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Proof relies on the following Bernstein-type Inequality:

Lemma 1 Under the assumptions of Theorem 1, for any positive

numbers ϵ and v, we have

P

[
N−1∑
i=0

t( ˆ̄Vi)Z
(1)
(i+1)∆ ≥ Nϵ, ∥t∥2N ≤ v2

]
≤ exp

(
−N∆ϵ2

2σ2
1v

2

)
.

W is a Brownian motion with respect to the augmented filtration

Fs = σ((Bu,Wu), u ≤ s, η).

Conclusion about technicalities associated with dependency:

1) Assumptions on the diffusion to ensure stationarity, mixing...

2) Martingale properties give the control of the centered empirical

process: no loss due to mixing in the penalty.

3) Coupling and variance inequality for equivalence of empirical

and theoretical norms and for residual terms.
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Discrete time version
(with fixed sample step, set to 1) of the stochastic volatility model.

 Yi = exp(Xi/2)ηi,

Xi+1 = b(Xi) + σ(Xi)ξi+1,
(10)

(ηi) and (ξi) independent sequences of i.i.d. r.v.’s (noise processes).

Only Y1, . . . , Yn are observed,

while process of interest is Ui = exp(Xi/2), and in particular the

functions b(.) and σ(.).
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For Yi = log(Si+1/Si):

Yi ∼L Uiηi,

Ui = (
∫ i+1

i
Vsds)

1/2 and ηi i.i.d. N (0, 1).

⇒ first equation of the continuous time model

= first equation of (10) (exact discretization in distrib.) with

specific Gaussian distribution for η.

⇒ Tools for estimating the common density of the Ui’s common to

both models.

But the second equations of both models: same idea of a time

dynamics, but do not coincide.
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Transformation into an Error-in-variables model. Zi = Xi + εi

Xi+1 = b(Xi) + σ(Xi)ξi+1

(11)

where  εi = ln(η2i )− E(ln(η2i ))

Zi = ln(Y 2
i )− E(ln(η2i )).

Here E(ln(η2i )) known + (η) and (ξ) are independent.

Log of Y 2
i ⇒ sign of Yi can not be recovered.

Observations: (Zi)1≤i≤n.
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Quotient strategy for estimation:

ℓ = bf, b̂ =
ℓ̂

f̂
.

Density estimation for f + estimation of ℓ

in a convolution model − an error in variable model

Why do mixing problems vanish from important terms (for the

rates).
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What is the benchmark?

Projection estimator for density of X1 when the process is

observed,

f̂m =
∑
j

âjφj , âj =
1

n

n∑
i=1

φj(Xi)

where φj is e.g. still the trigonometric basis.

E(f̂m) = fm =
∑
j

ajφj , aj = ⟨f, φj⟩.

Then

E(∥f̂m − fA∥2) = ∥f − fm∥2 + E(∥fm − f̂m∥2)

and

E(∥fm − f̂m∥2) = E(
∑
j

(âj − aj)
2) =

∑
j

Var

(
1

n

n∑
i=1

φj(Xi)

)
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β-mixing variance inequality:

Var

(
1

n

n∑
i=1

φj(Xi)

)
≤ 4

n

∫
φ2
j (x)b(x)dP(x)

with ∑
j

φ2
j = 2m+ 1,

∫
b(x)dP(x) ≤

∑
k

βk,

and ∑
j

Var

(
1

n

n∑
i=1

φj(Xi)

)
≤
∑
k

βk
Dm

n
.

This explains why pen(m) = κ
∑
k

βk
Dm

n

Lot of works on the subject (Lerasle (2009), Gannaz and

Wintenberger (2010)).
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Now for Zi = Xi + εi, fZ = f ⋆ fε (convolution).

f∗Z = f∗f∗ε where g∗(u) =
∫
eixug(x)dx

f∗ = f∗Z/f
∗
ε ⇒ f̂∗(u) =

1

n

n∑
k=1

eiuZk

f∗ε (u)

f̂m(x) =
1

2π

∫ πm

−πm

e−iuxf̂∗(u)du

Fourier inversion with cutoff, for integrability.

Bias measured w.r.t. fm(x) =
1

2π

∫ πm

−πm

e−iuxf∗(u)du
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Mean squared error:

E(∥f̂m − f∥2) = ∥f − fm∥2 + E(∥fm − f̂m∥2).

Squared bias ∥f − fm∥2 =

∫
|u|≥πm

|f∗(u)|2du

Variance term

E(∥fm − f̂m∥2) = Var

(
1

n

n∑
k=1

∫ πm

−πm

eiuZk

f∗ε (u)
du

)

=
1

n2

n∑
k,ℓ=1

∫ πm

−πm

∫ πm

−πm

cov(eiuZk, eivZℓ)

f∗ε (u)f
∗
ε (−v)

du

For k ̸= ℓ

cov(eiuZk, eivZℓ) = E(ei(uXk−vXℓ)+i(uεk−vεℓ))− E(eiu(Xk+εk))E(e−iv(Xℓ+εℓ))

= cov(eiuXk, eivXℓ)f∗ε (u)f
∗
ε (−v)
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This yields

E(∥fm−f̂m∥2) ≤ 1

n

∫ πm

−πm

du

|f∗ε (u)|2︸ ︷︷ ︸
usual deconvolution

variance bound

+ Var

(
1

n

n∑
k=1

∫ πm

−πm

eiuXkdu

)
︸ ︷︷ ︸

standard variance

of a mixing process

If |f∗ε (u)| ∼ C(1 + |u|)−γ , main variance term = O

(
m2γ+1

n

)
.

Second variance term = O
(m
n

)
with mixing or independence⇒

Negligible.

(see Comte, Dedecker, Taupin (2008)).
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More generally

|f∗ε (u)| ∼ c(1 + |u|)−γ exp(−µ|u|δ)

Examples: Gaussian case |f∗ε (u)| = exp(−u2/2), γ = 0, δ = 2.

Case log(N (0, 1)2): |f∗ε (u)| ∼
√

2/e exp(−π|u|/2), γ = 0, δ = 1.

⇒ Nonstandard variance orders,

⇒ Nonstandard rates of convergence for well-chosen m.

Model (Cutoff) Selection.

pen(m) =
κ

n
mω

∫ πm

−πm

du

|f∗ε (u)|2
where ω =

 0 if 0 ≤ δ < 1/3

inf(3δ−1
2 , δ) if δ > 1/3
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m̂ = argmin
m

{
−∥f̂m∥2 + pen(m)

}
.

We get for β-mixing with coefficients of X such that βk ≤ ck−(1+θ)

with θ > 3, we get

E(∥f̂m̂ − f∥2) ≤ C inf
1≤m≤mn

(
∥f − fm∥2 + pen(m)

)
+
C

n

where mn must be cautiously bounded.

In term of the mixing study, much thinner results can be proved,

not detailed here.

Now: Conditions are required for X to be β-mixing, in an

autoregressive and heteroskedastic model. See e.g. Doukhan (1994).
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For ℓ = bf , same principle:

ℓ̂m =
1

2πn

n∑
k=1

Zk+1

∫ πm

−πm

e−iuZk

f∗ε (u)
du

New variance term = E(Z2
1)

∫ πm

−πm

du

|f∗ε (u)|2
n

Same orders as previously but unbounded ⇒ additional technical

difficulties.

Moreover Zk+1 and Zk ⇒ two different indices, to split into

odd/even terms.

Zk+1 = Xk+1 + εk+1 = b(Xk) + σ(Xk)ξk+1 + εk+1,

while Zk = Xk + εk. Many results are obtained in two steps by

conditioning by X.
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Risk bound for one estimator holds for θ > 1.

penℓ(m) = E(Z2
1 )pen(m)

and under much stronger mixing conditions θ > 14, + moment

conditions

m̂ℓ = argmin
m

(
−∥ℓ̂m∥2 + penℓ(m)

)

E(∥ℓ̂m̂ℓ
− ℓ∥2) ≤ C inf

1≤m≤mn

(
∥ℓ− ℓm∥2 + penℓ(m)

)
+
C

n
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