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A random variable Z is said to have a regularly varying (right) tail
with exponent « > 0 if its law p satisfies the relation

p(x,00)(= P(Z > x)) = x"*L(x) for x >0,
where L is a slowly varying (at infinity) function.
A similar definition applies to infinite measures y as well, as long as
u(x,00) is finite for x large enough.

If the above holds with oo = 0, we speak of slow variation of the
tail.



Regular variation it is preserved under various operations common
in probability theory.

Example 1 Weighted sums Let 27, Z5,..., be iid random
variables, and 1,1, ..., non-negative weights. If a generic
element Z of the sequence (Z;) is regularly varying with exponent
a > 0, then under appropriate conditions on the coefficients, the
infinite series X = 7%, 1; Z; converges with probability 1, and

Mikosch and Samorodnitsky (2000) provide the most general
conditions for that.



Example 2 Products

Let Z be a random variable that is regularly varying with exponent
a > 0, independent of another random variable Y > 0, and write
X=YZ.

If the tail of Y is light enough, then the tail of X is also regularly
varying with exponent a. If, for example, EY®*¢ < oo for some
€ > 0, then the tail equivalence

im P(X > x)

— " = FY©
X—00 P(Z > X)

holds; see Breiman (1965).



Example 3 Stochastic integrals Let (M(s))scr be a Lévy process
with Lévy measure , and g : R — R, a measurable function.
Under certain integrability assumptions on g, the random variable

X = /R 2(s) M(ds)

is well defined, see Rajput and Rosinski (1989). If the Lévy
measure 7 has a regularly varying tail with exponent o > 0 then
the integral X itself is regularly varying and

lim X>X) /[ ) ds

X—00 T]XOO

see Rosinski and Samorodnitsky (1993).



Linear filters preserve regular variation.

We are interested in the inverse problem: suppose that the
output from a linear filter is regularly varying with index

a > 0. When may we conclude that the input to the filter is
with regularly varying the same index?

For o = 0 the answer is “always”.

For e > 0 this question is connected to the cancellation
property of certain o-finite measures.

The latter is related to the existence of real zeros of certain
Fourier transforms.



Let v and p be two o-finite measures on (0, 00). We define a new
measure on (0, 00), the multiplicative convolution of the measures
v and p, by

(v®p)(B) = /Ooo v(x~'B) p(dx), B a Borel subset of (0, 00).

We say that a o-finite measure p has the cancellation property
with respect to a family A/ of o-finite measures on (0, o) if for
any o-finite measures v, 7 on (0,00) with 7 € N,

vVRPp=U®p - vV =U.



If V"= {01}, then the problem is known as the Choquet-Deny
equation in the multiplicative form. The class of measures having
the cancellation property with respect to {d1} can be determined
by the well studied Choquet-Deny theory, cf. Rao and Shanbhag
(1994).

We are interested in the case when A consists of a single measure
Vo With power density function, i.e., v, is a o-finite measure on
(0, 00) with density

Va(dx) o x~(@F) o £ 0,

dx x1 a=0.



Theorem Let o € R and p a non-zero o-finite measure such
that

oo
YOOV ¥yt h(dy) < oo for some & > 0.
0
Then the measure p has the cancellation property with respect

to N' = {v,} if and only if

/ vyt p(dy) #0 for all 6 € R.
(0]



If N
/0 % p(dy) =0

for some 0y € R, then for any real a, b with 0 < a® + b* < 1, the
o-finite measure

v(dx) := g(x) va(dx)
with

g(x) := 1+ acos(fg log x) + bsin(fp logx), x>0,

satisfies the equation v ® p = v, ® p.



Connection with inverse problems

Theorem Let p be a non-zero o-finite measure such that for
some o-finite measure v on (0, 00), the measure v ® p has a
regularly varying tail with exponent o > 0 (and a technical
assumption). If

/ yoti® p(dy) #0 for all 0 € R,
0

then the measure v has regularly varying tail with exponent «,
equivalent to the tail of v ® p. Conversely, if the Fourier
transform vanishes at some point, then there exists a o-finite
measure v on (0,00) without a regularly varying tail, such that
the measure v ® p has regularly varying tail with exponent «
and the tail equivalence holds.



Theorem Assume that o > 0 and (Z;) is a sequence of iid
random variables.

Suppose that (1) is a sequence of nonnegative coefficients
satisfying ¥; = 1 and

x
Zq/;jo‘*‘s < oo forsome0<d < a.
j=1

If 37721 ¢ = oo, assume additionally that

limsup P(Z = _X)

X—00 P(Z>X) <0

Assume that the series X = Zj'il Y; Z; converges a.s., and that
X is regularly varying with exponent a.



(i)

If

o0

> P20 forall 6 ER,

j=1
then a generic noise variable Z is regularly varying with
exponent « as well, and tail equivalence holds.

Suppose that the Fourier transform vanishes at some point,
then there exists a random variable Z that is not regularly
varying, the series X = Ej’il Y; Zj converges a.s., and X is

regularly varying with exponent .



Consider the case of finite sums. We say that a set of g > 2
positive coefficients 1 = 1)1, ..., is a-regular variation
determining if iid random variables Z1, ..., Z, are regularly varying
with exponent « if and only if

q
Xq = ij Z.I
j=1

is regularly varying with exponent .

The corresponding notion in the slowly varying case, i.e., when
a =0, is not of interest: any set of positive coefficients 1,..., 14
is O-regular variation determining.



For o > 0 positive coefficients v, ...,14 are a-regular
variation determining if and only if

q
D> st £0 forall 6 €R.

j=1

Example Any set of g = 2 positive coefficients 1 = 11,5 is
a-regular variation determining because the relation

1+y3t =0

is not possible.



Example There exist g = 3 positive coefficients 1 = 1)1, 92, 13
that are NOT «-regular variation determining. These coefficients
must lie on a a countable set of curves in the (7, 13) plane.
Some of these curves (for ao = 1):

Exception curves




Products of random variables

Let « > 0 and Y a positive random variable satisfying

EY*t9 < oo for some 6 > 0. We will call Y and its distribution
a-regular variation determining if the a-regular variation of

X = YZ for any random variable Z which is independent of Y/,
implies that Z itself has a regularly varying tail with exponent a.

The corresponding notion in the slowly varying case (o = 0) is
trivial.



Theorem A positive random variable Y with EY®t < oo for
some § > 0 is a-regular variation determining if and only if

E[Yot?] #£0 forall § € R.

Corollary A sufficient condition for Y with EY?? < oo for
some § > 0 to be a-regular variation determining is

log Y is an infinitely divisible random variable.



Example The following random variables are a-regular variation
determining:

@ Gamma random variables, and the absolute value of a
centered normal random variable to any positive power.

@ Pareto random variables with exponent p > «, and their
reciprocals.

@ Lognormal random variables.
@ Cauchy random variables with v < 1.

But: there exist non a-regular variation determining random
variables.



