
A TALE OF TWO INEQUALITIES

David M. Mason

University of Delaware

1



ABSTRACT

In the first part of my talk I will show how an ex-
tension of a quantile inequality due to Komlós,
Major and Tusnády (1975) yields a number of
interesting couplings of a statistic and a stan-
dard normal random variable.

Associated with these couplings are certain gen-
eralized Bernstein-type inequalities. In order to
apply these couplings it is often helpful to have
a maximal Bernstein-type inequality.

This need led to a new and unexpected maxi-
mal Bernstein-type inequality, which will be de-
scribed in the second part of my talk, along with
applications.

This part of my talk is based upon joint work
with Peter Kevei.
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KMT (1975)

Komlós, Major and Tusnády (1975) proved the
following powerful Gaussian coupling to partial
sums of i.i.d. random variables.

Theorem [PS] Let X be a random variable with
mean 0 and variance 0 < σ2 < ∞. Also assume that
its moment generating function E exp(hX) is finite
for all h in a neighborhood of 0. Then on the same
probability space there exist i.i.d. X random variables
X1, X2, . . . , and i.i.d. standard normal random vari-
ables Z1, Z2, . . . , such that for positive constants C, D
and λ for all x ∈ IR and n ≥ 1,

P
{

max1≤k≤n

∣∣∣σ−1
∑k

i=1Xi −
∑k

i=1Zi

∣∣∣ > D log n + x
}

≤ C exp (−λx) .
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QUANTILE FUNCTION

One of the key tools needed in its proof was a
quantile inequality. To describe it let us intro-
duce some notation.

Let {Yn}n≥1 be a sequence of random variables
and for each integer n ≥ 1 let

Fn(x) = P{Yn ≤ x}, for x ∈ IR,

denote the cumulative distribution function of
Yn.

Its inverse distribution function or quantile
function is defined by

Hn(s) = inf{x : Fn(x) ≥ s} for s ∈ (0, 1) .
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A DISTRIBUTIONAL IDENTITY

Let Z denote a standard normal random vari-
able and Φ be its distribution function.

Since Φ(Z) =d U , we see that for each integer
n ≥ 1.

Hn(Φ(Z)) =d Yn.

For this reason, we shall from now on write for
convenience

Hn(Φ(Z)) = Yn. (HY)
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SPECIAL CASE

Consider now the special case of {Yn}n≥1 such
that for each n ≥ 1,

Yn =d

n∑
i=1

Xi/
(
σ
√
n
)
, (SUM)

where X1, X2, . . . , are i.i.d. X satisfying the
conditions of Theorem [PS].
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QUANTILE INEQUALITY

Fundamental to the proof of Theorem [PS] is
the following quantile inequality.

Proposition [KMT] Assume that X1, X2, . . . ,
are i.i.d. X satisfying the conditions of The-
orem [PS]. Then there exist a 0 < D < ∞
and an 0 < η < ∞ such that for all inte-
gers n ≥ 1, whenever Yn is as in (SUM) and
(HY), and

|Yn| ≤ η
√
n,

we have

|Yn − Z| ≤ DY 2
n√
n

+
D√
n
.
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COUPLING

We shall soon see that this inequality leads to
a coupling of Yn and Z such that for suitable
constants C > 0 and λ > 0, for z ≥ 0

P
{√

n |Yn − Z| > z
}
≤ C exp (−λz) ,
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BERKES-PHILIPP LEMMA

Another way of saying this is that via Lemma
A1 of Berkes and Philipp (1979):

For each integer n ≥ 1 there exist X1, . . . , Xn
i.i.d. X and i.i.d. standard normal random vari-
ables Z1, . . . , Zn such that on a suitable prob-
ability space for all z ≥ 0

P

{∣∣∣∣∣σ−1
n∑
i=1

Xi −
n∑
i=1

Zi

∣∣∣∣∣ > z

}
≤ C exp (−λz) .
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BASIC QUANTILE INEQUALITY

The following quantile inequality is essentially
due to KMT (1975) and it can be implied from
their analysis. That it holds more generally
than in the i.i.d. sum setup of Proposition [KMT]
is more or less known by experts.

Let {Fn}n≥1 be a sequence of cumulative distri-
bution functions, not necessarily being that of a
sequence of sums of i.i.d. random variables, and
let Yn be defined through the quantile function
as in HY.
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BASIC THEOREMWith the above notation, as-
sume there exist a sequence Kn > 0, a sequence 0 <
εn < 1 and an integer n0 ≥ 1 such that for all n ≥ n0

and 0 < z ≤ εn
√
n

P {Yn > z} ≤ (1− Φ (z)) exp
(
Kn

(
z3 + 1

)
/
√
n
)
,

P {Yn > z} ≥ (1− Φ (z)) exp
(
−Kn

(
z3 + 1

)
/
√
n
)
,

P {Yn < −z} ≤ Φ (−z) exp
(
Kn

(
z3 + 1

)
/
√
n
)
,

and

P {Yn < −z} ≥ Φ (−z) exp
(
−Kn

(
z3 + 1

)
/
√
n
)
.

Then whenever n ≥ n0 ∨
(
64K2

n

)
and

|Yn| ≤ ηn
√
n,

where ηn = εn ∧ (1/ (8Kn)), we have

|Yn − Z| ≤ 2KnY
2
n√

n
+

2Kn√
n
.
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Specializing to Kn = Ln1/2−1/p we get:

COROLLARY 1 Assume there exist a L > 0, an
0 < ε < 1, a p ≥ 2 and an integer n0 ≥ 1 such that
for all n ≥ n0 and 0 < z ≤ εn1/p

P {Yn > z} ≤ (1− Φ (z)) exp
(
L
(
z3 + 1

)
/n1/p

)
,

P {Yn > z} ≥ (1− Φ (z)) exp
(
−L

(
z3 + 1

)
/n1/p

)
,

P {Yn < −z} ≤ Φ (−z) exp
(
L
(
z3 + 1

)
/n1/p

)
and

P {Yn < −z} ≥ Φ (−z) exp
(
−L

(
z3 + 1

)
/n1/p

)
.

Then whenever n ≥ n0 ∨
(
64L2n1−2/p

)
and

|Yn| ≤ ηn1/p,

where η = ε ∧ (1/ (8L)), we have

|Yn − Z| ≤ 2LY 2
n

n1/p
+

2L

n1/p
.
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COROLLARY 2 In addition to the assumptions of
Corollary 1 assume that for suitable positive constants
a, b and c for all n ≥ 1 and z ≥ 0

P {|Yn| ≥ z} ≤ c exp

(
− bz2

1 + a
(
n−1/pz

)2p/(p+2)

)
. (1)

Then for positive constants C and λ, for all z ≥ 0
and n ≥ 1,

P
{
n1/p |Yn − Z| > z

}
≤ C exp

(
−λz4/(p+2)

)
.
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Example 1 (Partial sums).

Let X1, X2, ..., be i.i.d. X having mean zero
and variance 0 < σ2 < ∞. Assume that for
some C > 0, D > 0 and 0 < β ≤ 1, for all
x ≥ 0

P {|X| > x} ≤ D exp
(
−Cxβ

)
.

By a Theorem in Saulis and Statulevičius (1991),
the sequence of random variables

Yn =d

n∑
i=1

Xi/
(
σ
√
n
)
,

satisfies the conditions of the Corollaries 1 and
2, with

β = 4/(p + 2), p ≥ 2.

The case p = 2, i.e. β = 1 corresponds to the
conditions of Theorem [PS].
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Example 2 (Self-normalized sums)

LetX1, X2, . . . , be i.i.d. X , where X has mean
0, variance 0 < σ2 < ∞ and finite third abso-
lute moment E |X|3 <∞.

For each integer n ≥ 1 consider the self-normalized
sum

Yn =d
X1 + · · · +Xn√
X2

1 + · · · +X2
n

.

A special case of the results of Jing, Shao and
Wang (2003) shows that the assumptions of Corol-
lary 1 hold with p = 2.
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GGM Inequality

Now since (obviously)

Yn = Op (1) ,

we can apply Theorem 2.5 of Giné, Goetze and
Mason (1997) to show that for suitable con-
stants b > 0 and c > 0, for all z ≥ 0 and
n ≥ 1

P {|Yn| ≥ z} ≤ c exp
(
−bz2

)
.

Thus we conclude by Corollary 2 that for posi-
tive constants C and λ, for all z ≥ 0 and n ≥ 1,

P
{
n1/2 |Yn − Z| > z

}
≤ C exp (−λz) .
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REMARK

Recall in Example 1 that for this last coupling
inequality to hold for an un-self-normalized sum
Sn/ (σ

√
n) we required thatX have a finite mo-

ment generating function in a neighborhood of
zero.
Example 2 shows that self-normalizing dramat-
ically reduces the assumptions needed for this
coupling inequality to be valid.
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Example 3 (dependent sums).

Let X1, X2, . . . , be a stationary sequence of
random variables satisfying

EX1 = 0 and V arX1 = 1.

Set Sn = X1 + · · · +Xn and B2
n = V ar (Sn).

Assume that for some σ2
0 > 0 we have B2

n ≥
σ2

0n for all n ≥ 1.

Set
Yn =d Sn/Bn.

The following examples are taken from Stat-
ulevičius and Jakimavičius (1988).
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SOME SIGMA FIELDS

Let
{
F ,F ts : 1 ≤ s ≤ t <∞

}
be a family of

sigma fields such that

(i) F ts ⊂ F for all 1 ≤ s ≤ t <∞,

(ii) F t1s1 ⊂ F t2s2 for all 1 ≤ s2 ≤ s1 ≤ t1 ≤ t2 <
∞,

(iii) σ {Xu, 1 ≤ s ≤ u ≤ t <∞} ⊂ F ts.
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SOME MIXING CONDITIONS

Define the α−mixing, ϕ−mixing and ψ−mixing
functions

α (s, t) = sup
A∈Fs1 ,B∈F∞t

|P (A ∩B)− P (A)P (B)| ,

ϕ (s, t) = sup
A∈Fs1 ,B∈F∞t

∣∣∣∣P (A ∩B)− P (A)P (B)

P (A)

∣∣∣∣ ,
ψ (s, t) = sup

A∈Fs1 ,B∈F∞t

∣∣∣∣P (A ∩B)− P (A)P (B)

P (A)P (B)

∣∣∣∣ .
In these last two expressions it is understood

that 0/0 := 0, whenever its occurs.
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SOME MIXING RATES

For some B > 0 and µ > 0

(M.1) α (s, t) ≤ Be−µ(t−s),

(M.2) ϕ (s, t) ≤ Be−µ(t−s),

(M.3) ψ (s, t) ≤ Be−µ(t−s).

Some Bounding Conditions:
(B.1) |X1| ≤ C for some 0 < C <∞,

(B.2) Eeθ|X1| <∞ for some θ > 0.
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Applying results in Statulevičius and
Jakimavičius (1988) we get that Corol-
laries 1 and 2 hold:

Under conditions (M.1) and (B.1), with p = 6;

under conditions (M.1) and (B.2), with p = 10;

under m−dependence and (B.1), with p = 2;

under m−dependence and (B.2), with p = 6.

In the next three cases we assume that the ran-
dom variables Xt are connected by a Markov
chain.

Under conditions (M.2) and (B.1), with p = 2;

under conditions (M.2) and (B.2), with p = 6;

under conditions (M.3) and (B.2), with p = 2.
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Specializing to m-dependent sums

Form the partial sum process:

Yn

(
i

n

)
=
Si
Bn

, for i = 0, 1, . . . , n,

where S0 = 0, and let for i = 1, . . . , n, and for
(i− 1)/n < t < i/n

Yn (t) =

(
Si−1 + n

(
t− i− 1

n

)
Xi

)
/Bn, .

Further let W (t), 0 ≤ t ≤ 1, denote a standard
Wiener process. Let PYn and PW denote the
distributions on C [0, 1]. One can use the above
results to show that for some constant c > 0

L
(
PYn, PW

)
≤ c

√
log n

n1/4
,

where L denotes the Prokhorov distance.
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APPROXIMATION INEQUALITY

There exist positive constants ci, i = 1, . . . , 6,
such that for each n ≥ m a version of Yn (·)
and W can be defined on the same probability
space such that for all z ≥ 0

P

{
sup

0≤t≤1
|Yn (t)−W (t)| > c1z + c2

√
log n

n1/4

}

≤ c3 exp

 −c4z2

c5 + c6

(
z/n1/4

)
 .
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STRONG APPROXIMATION

The above is not a strong approximation. Ap-
plying a special case of a result of Shao and Lu
(1987) shows that in this setup there exist i.i.d.
standard normal random variables Z1, Z2, . . . ,
on the same probability space as X1, X2, . . . ,
such that with Zm = Z1 + · · · + Zm,m ≥ 1,

max
1≤m≤n

∣∣∣σ−1Sm − Zm
∣∣∣ =

O
(
(log n)9/4+ε n1/4

)
, a.s.
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BERNSTEIN INEQUALITY

Let X1, X2, . . . , be a sequence of independent
random variables such that for all i ≥ 1, EXi =
0 and for some κ > 0 and v > 0 for integers
m ≥ 2, E |Xi|m ≤ vm!κm−2/2. The classic
Bernstein inequality (cf. p. 855 of Shorack and
Wellner (1986) says that in this situation for all
n ≥ 1 and t ≥ 0

P

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

{
− t2

2vn + 2κt

}
.

Moreover, (cf. Theorémè B.2 in Rio (200) its
maximal form also holds, i.e. we have

P

{
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

{
− t2

2vn + 2κt

}
.
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GENERAL BERNSTEIN
INEQUALITY

It turns out that, under a variety of assump-
tions, a sequence of not necessarily independent
random variablesX1, X2, . . . , will satisfy a gen-
eralized Bernstein-type inequality of the follow-
ing form: for suitable constants A > 0, a > 0,
b ≥ 0 and 0 < γ < 2 for all i ≥ 0, n ≥ 1 and
t ≥ 0,

P{|S(i + 1, i + n)| > t}

≤ A exp

{
− at2

n + btγ

}
,

(GB)

where for any choice of 1 ≤ i ≤ j < ∞ we de-

note the partial sum S(i, j) =
∑j
k=iXk. Here

are some examples.
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Bernstein Example 1

Let X1, X2, . . . , be a stationary sequence satis-
fying

EX1 = 0 and V arX1 = 1.

For each integer n ≥ 1 set

Sn = X1 + · · · +Xn

and B2
n = V ar (Sn).

Assume that for some σ2
0 > 0 we have B2

n ≥
σ2

0n for all n ≥ 1.

Statulevičius and Jakimavičius (1988) prove that
the partial sums satisfy GB with constants de-
pending on the particular mixing and bounding
condition that the sequence may fulfill.
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BENTKUS AND RUDZKIS

Their Bernstein-type inequalities are derived via the fol-
lowing result of Bentkus and Rudzkis (1980) relating cu-
mulant behavior to tail behavior:

For an arbitrary random variable ξ with expectation 0,
whenever there exist γ ≥ 0, H > 0 and ∆ > 0 such that
its cumulants Γk (ξ) satisfy |Γk (ξ)| ≤ (k!/2)1+γH/∆k−2

for k = 2, 3, . . . , then for all x ≥ 0

P {±ξ > x}

≤ exp

− x2

2
(
H +

(
x/∆1/(1+2γ)

)(1+2γ)/(1+γ)
)
 .
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Bernstein Example 2

Doukhan and Neumann (2007) have shown us-
ing the result in Bentkus and Rudzkis (1980)
cited in the previous example that if a sequence
of mean zero random variables X1, X2, . . . , sat-
isfies a general covariance condition then the
partial sums satisfy GB.

Refer to their Theorem 1 and Remark 2, and
also see Kallabis and Neumann (2006).
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Bernstein Example 3

Assume that X1, X2, . . . , is a strong mixing sequence
with mixing coefficients α (n), n ≥ 1, satisfying for some
c > 0, α (n) ≤ exp (−2cn). Also assume that EXi = 0
for some M > 0 |Xi| ≤ M , for all i ≥ 1. Theorem 2 of
Merlevéde, Peligrad and Rio (2009) implies that for some
constant C > 0 for all t ≥ 0 and n ≥ 1,

P {|Sn| ≥ t} ≤ exp

(
− Ct2

nv2 +M 2 + tM (log n)2

)
,

where Sn =
∑n

i=1Xi and

v2 = sup
i>0

V ar (Xi) + 2
∑
j>i

|cov (Xi, Xj)|

 .
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EXPLANATION

To see how this last example satisfies GB, notice
that for any 0 < η < 1 there exists a D1 > 0
such that for all t ≥ 0 and n ≥ 1,

nv2+M2+tM (log n)2 ≤ n
(
v2 +M2

)
+D2t

1+η.

Thus GB holds with γ = 1 + η for suitable
A > 0, a > 0 and b ≥ 0.
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GENERAL MAXIMAL
BERNSTEIN INEQUALITY

For any choice of 1 ≤ i ≤ j <∞ define

M(i, j) = max{|S(i, i)|, . . . , |S(i, j)|}.
Somewhat unexpectedly, if a sequence of random vari-
ables X1, X2, . . . , satisfies a Bernstein-type inequality of
the form GB, then without any additional assumptions a
modified version of it also holds for M(m + 1,m + n).

GMB Inequality Assume that for constants A > 0,
a > 0, b ≥ 0 and γ ∈ (0, 2), inequality GB holds for
all i ≥ 0, n ≥ 1 and t ≥ 0. Then there exist constants
c > 0 and C > 0 depending only on A, a, b and γ such
that for all m ≥ 0, n ≥ 1 and t ≥ 0,

P{M(m + 1,m + n) > t} ≤ C exp

{
− ct2

n + btγ

}
.

Moreover, if 0 < γ ≤ 1 we can take c = a and if
1 < γ < 2, c < a can be chosen arbitrarily close to a.
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MOTIVATION

The GMB inequality was motivated by Theo-
rem 2.2 of Móricz, Serfling and Stout (1982),
who showed that whenever for a suitable pos-
itive function g (i, j) of (i, j) ∈ {1, 2, . . . } ×
{1, 2, . . . }, positive function φ (t) defined on
(0,∞) and constant K > 0, for all 1 ≤ i ≤
j <∞ and t > 0,

P{|S(i, j)| > t} ≤ K exp {−φ (t) /g (i, j)} ,
then there exist constants c > 0 and C > 0
such that for all m ≥ 0, n ≥ 1 and t > 0,

P{M(m+1,m+n) > t} ≤ C exp {−cφ (t) /g (1, n)} .

This inequality is clearly not applicable to ob-
tain a maximal form of the generalized Bern-
stein inequality.
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APPLICATIONS OF GMB

INEQUALITY

An obvious application of the GMB inequality
is the following bounded law of the iterated log-
arithm.

Bounded LIL Under the assumptions of the
previous theorem, with probability 1,

lim sup
n→∞

|S(1, n)|√
n log log n

≤ 1√
a
.
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OBSERVATION

In general one cannot replace “≤ ” by “=” our bounded
LIL. To see this, let Y , Z1, Z2, . . . be a sequence of in-
dependent random variables such that Y takes on the
value 0 or 1 with probability 1/2 and Z1, Z2, . . . are in-
dependent standard normals. Now define Xi = Y Zi,
i = 1, 2, . . . It is easily checked that assumptions of the
GMB inequality are satisfied with A = 2, a = 1/2, b = 0
and γ = 1.

When Y = 1 the usual law of the iterated logarithm gives
with probability 1,

lim sup
n→∞

|S(1, n)|/
√
n log log n =

√
2 = 1/

√
a

whereas, when Y = 0 the above limsup is 0. This agrees
with the bounded LIL, which says that with probability
1 the limsup is ≤

√
2.

However, we see that with probability 1/2 it equals
√

2
and with probability 1/2 it equals 0.
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The GMB inequality is also a useful tool in
establishing approximation inequalities for sta-
tionary partial sum processes under the mix-
ing and bounding conditions that were defined
above of the sort that was described here for the
stationary m-dependent partial sum process.
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