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Adaptive and Interacting MCMC algorithms

Outline

1. MCMC algorithms are a flexible family of algorithms to sample
distributions, known up to a normalisation factor,

2. This flexibility comes at a price... badly tuned MCMC can be very
slow to converge and the convergence may be difficult to diagnose.

3. In the last 10 years, several classes of algorithms have been
introduced to increase the sampling efficiency of the MCMC,
without demanding much additional user supervision. The common
idea is to let the algorithms self-learned from the past simulations
by adapting its parameters

4. Problem : the Markov property is not retained and the convergence
is more difficult to study

5. Today : the basic ingredients of successful adaptations.
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Adaptive MCMC

The Dream : Given a model (i.e., X and π), the computer :

I efficiently and cleverly tries out different MCMC algorithms ;

I automatically learns the good ones ;

I runs the algorithm for long enough ;

I obtains excellent estimates together with error bounds ;

I reports the results clearly and concisely, while user unaware of the
complicated MCMC and adaption that was used.

The Reality : Easier said than done !
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Adaptive MCMC

Adaptive MCMC

I Let {Pθ, θ ∈ Θ} be a collection of Markov chain kernels on X, each
of which is φ-irreducible and aperiodic and has π(·) as a stationary
distribution :

πPθ = π , for any θ ∈ Θ

I The parameter space Θ the parameter space can either be finite
dimensional or infinite dimensional.

I Let θn be a sequence of Θ-valued random variables which are
updated according to specific rules.

I Assumption the adaptation is conditionally Markovian, i.e. θn
resume all the informations obtained in the past to adapt the
proposal

P[Xn+1 ∈ A|Gn] = Pθn(Xn, A)

where Gn = σ(X0, . . . , Xn, θ0, . . . , θn).
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Adaptive MCMC

An elementary example : the Adaptive Metropolis
Algorithm

I Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q̄, and q is symmetric,
q̄(z) = q̄(−z)

I In this case, q(x, y) = q(y, x) = q̄(y − x) = q̄(x− y) and the
acceptance rate does not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)
π(x)

I ... biased random walk where some moves get rejected.
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Adaptive MCMC

Influence of the scaling

I If the variance is either too small or too large, then the
convergence rate of the Markov chain will be slow and any inference
from values drawn from the chain are likely to be unreliable.

1. too small... almost all the proposal are accepted. Nevertheless, the
stepsizes are small, and the algorithm visits the state space very
slowly.

2. too large... many propositions fall in regions where π is very small.
These proposals are often rejected and the algorithm get stuck at a
point.

Finding a proper scale is thus mandatory ! but it is not always
obvious to say what small or large mean for a given distribution π and a
given function.
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Adaptive MCMC

Scaling
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Adaptive MCMC

Optimization Criterion I

I To find a proper scaling, a criterion reflecting the performance of
the sampling algorithm is required.

I In practical MCMC, interest may lie in the estimation of a (certain
numbers) of additive functionals. For any one of these functionals, f
say, a plausible criterion to minimise is the stationary integrated
autocorrelation time for f under π

τ(f) = 1 + 2
∞∑
i=1

Corrπ(f(X0), f(Xi))

I The central limit theorem for additive functional of Markov chains
{f(Xi)} gives a Monte Carlo variance proportional to τ(f)...
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Adaptive MCMC

Optimization Criterion II

I This approach has two major disadvantages...

1. Estimation of τ(f) is notoriously difficult... This is equivalent to
estimating the spectral density of the process {f(Xk)} at zero
frequency at stationarity...

2. The optimisation criterion gives a different solution for the optimal
chain for different functionals f .

I Several approaches have been proposed to obtain a more easy to
compute and more generally meaningful optimisation criterion...

I The common idea is to replace the optimisation problem by a simpler
one, which captures the salient features of the original problem.
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Adaptive MCMC

Optimal Scaling of the RWM

I A useful idea is to consider a high-dimensional limit... By rescaling
the time as a function of the dimension, a diffusion limit can be
obtained.

I The choice of an optimal scaling then translates into the
optimization of the speed this limiting diffusion.

I In the diffusion limit, the problem of non-uniqueness of the optimum
is avoided since in the limit the correlation τ(f) is proportional to
the inverse of the speed of the limiting diffusion...
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Adaptive MCMC

Diffusive Limits

I Stationary distribution : π(d)(x1, . . . , xd) =
∏d
i=1 f(xi) on Rd

(asymptotic = d→∞)

I Metropolis proposal : q
(d)
θ (x1, . . . , xd) ∼ N

(
0, (θ2/d)Id

)
... with

variance decreasing as 1/d.

I Interpolated process : Z
(d)
t = X

(d)
[td],1... we consider a single

component and we speed up the time scale by d.

I When d becomes large, a single component basically see the mean
of the others (mean-field)...
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Adaptive MCMC

Diffusive Limits

I Z(d) ⇒ Z, where Z solves the Langevin SDE

dZt = v1/2(θ)dBt + (1/2)v(θ)∇ log f(Zt)dt

v(θ) = 2θ2Φ
(
−θ
√
I/2
)

where Φ is the distribution function of N (0, 1) and I is Fisher
Information of the translation model associated to f ,
I =

∫
(f ′(x)/f(x))2f(x)dx.

I v(θ) is the speed of the diffusion : Zt = Z̃v(θ)t where {Z̃t} is a
solution of the normalized Langevin SDE

dZ̃t = dBt + (1/2)∇ log f(Z̃t)dt.
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Adaptive MCMC

Speed / Acceptance rate

I Mean Acceptance rate (stationary regime)

τ (d)(θ) =
∫∫

π(d)(x)q(d)
θ (y − x)

{
1 ∧ π

(d)(y)
π(d)(x)

}
dxdy .

I Result : τ (∞)(θ) = limd→∞ τ (d)(θ) exists and it is possible to relate
the speed of the diffusion to the mean acceptance rate !

v(θ) = τ (∞)(θ)
{

Φ−1(τ (∞)(θ)/2)
}2

I The speed is optimal for the value θ∗ of the parameter which
satisfies τ (∞)(θ∗) = τ̄ ≈ 0.234...
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Adaptive MCMC

Pros and Cons of diffusion limits

I Empirically this 0.234 rule has been observed to be approximately
right much more generally.

I Extensions and generalisations of this result can be found in
(Roberts and Rosenthal, 2001) and (Bedard, 2007), (Pillai, Stuart,
2009), (Bedard, Douc, Fort, Moulines, 2010).

I The focus of much of this work is in trying to characterise when the
0.234 rule holds and to explain how and why it breaks down in other
situations.

I One major disadvantage of the diffusion limit work is its reliance on
asymptotics in the dimensionality of the problem. Although it is
often empirically observed that the limiting behaviour can be seen in
rather small dimensional problems, (see for example Gelman et al.,
1996), it is difficult to quantify this in any general way.
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Adaptive MCMC

How to control the Acceptance Rate

I Objective : Finding the scaling factor θ solving

h(θ) def=
∫∫

α(x, y)qθ(y − x)π(x)dxdy − τ̄ = 0,

where α(x, y) = {1 ∧ π(y)/π(x)}.
I Under general assumptions, θ → h(θ) is monotone with

limθ→0+ h(θ) = 1− τ̄ > 0 and limθ→∞ h(θ) = −τ̄ < 0... But h(θ)
cannot be computed explicitly !

I Nevertheless, denoting θk the scaling value at iteration k,
α(Xk, Yk+1)− τ̄ may be seen as a noisy observation of h(θk)...

I Suggest to use a stochastic approximation procedure to tune θ.
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Adaptive MCMC

Controlled Metropolis Algorithm

I Proposition & Accept/Reject

Yk+1 = Xk + θkN (0, Id)

Xk+1 =

{
Yk+1 with prob. α(Xk, Yk+1)
Xk otherwise

I Update the scaling factor

log(θk+1) = log(θk) + γk+1 {α(Xk, Yk+1)− τ̄}

where limk→∞ γk = 0 and
∑∞
k=1 γk =∞.
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Multidimensional Scaling

Multidimensional scaling

I Same asymptotic analysis (d→∞) with

π
(d)
Σd

(x) = |Σd|−1π(d)
(
Σ−1
d x

)
, π(d)(x1, . . . , xd) =

d∏
i=1

f(xi)

q ∼ N(0, (σ2/d)Id)

then Z
(d)
t = X[td],1 converges to the solution a Langevin SDE.

I the target acceptance rate (0.234...) which maximizes the speed of
the limiting diffusion is independent from Σd, but the achievable
maximal speed is strongly affected by Σd... loss

lim
d

d−1
∑d
i=1 λ

2
d,i(

d−1
∑d
i=1 λd,i

)2

where λd,i eigenvalues of Σd.
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Adaptive MCMC

Multidimensional Scaling

Adaptive MCMC with multidim. scaling
1. Simulate

Yk+1 = Xk +N (0, σkΓk)

Xk+1 =

{
Yk+1 with proba. α(Xk, Yk+1)
Xk otherwise

2. Update the target mean and covariance

µk+1 = µk + γk+1(Xk+1 − µk)

Γk+1 = Γk + γk+1

{
(Xk+1 − µk)(Xk+1 − µk)T − Γk

}
3. Control the global scale of the proposal

σk+1 = σk + γk+1 (α(Xk, Yk+1)− τ̄)
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Multidimensional Scaling
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Multidimensional Scaling
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Multidimensional Scaling
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Multidimensional Scaling

Adaptive MCMC

I A family of transition kernels {Pθ, θ ∈ Θ} such that, for all θ ∈ Θ,
the target distribution π? is the stationary distribution of Pθ :
π?Pθ = π?.

I An adaptive MCMC algorithm : process {(Xn, θn), n ≥ 0} on the
product space X×Θ :

I Sampling : given the past, draw

Xn+1 ∼ Pθn(Xn, ·)

I Internal adaptation : update the parameter θn from the past
values of the X and θ
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Interacting MCMC

I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?

I Iteration n :

(a) with probability (1− ε) draw Xn+1 ∼ P (Xn, ·)

Pθn(Xn, A) = (1− ε)P (Xn, A) + · · ·
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Interacting MCMC

Interacting MCMC
I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?

I Iteration n :

(b) with probability ε, draw a point Y? among {Y1, · · · , Yn} and
accept/reject with probability α(Xn, Y?)

Pθn(Xn, A) = (1− ε)P (Xn, A) + ε

{∫
A

θn(dy) α(Xn, y)

+1A(Xn)
∫
θn(dy) {1− α(Xn, y)}

}
where

θn(dy) =
1
n

n∑
k=1

δYk(dy) and α(x, y) = 1 ∧ π(y) θ?(x)
θ?(y) π(x)
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Interacting MCMC

An example of application
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Figure: Example : Mixture of a 2D-Normal distribution [target / EE / Parallel
Tempering / SRWM]
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Interacting MCMC

I Construct an auxiliary process {Yn, n ≥ 0} s.t. its empirical process
limn θn converges in some appropriate sense to θ?(·) so that
asymptotically,

Pθn ≈ Pθ?

I The acceptance ratio α(x, y) of the interaction is chosen s.t.
π? Pθ? = π?

I Heuristic :

1. if these two conditions are satisfied, then the distribution of (Xk)k≥0

converges to π? as k →∞.
2. wishful thinking : The interaction speed up the convergence... the

gain in convergence speed is large enough to offset the cost of
sampling from an auxiliary process.
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Interacting MCMC

Interacting MCMC : refinements

When sampling from the past of the auxiliary process, select the points :
introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x))

Pθn(Xn, A) = (1− ε)P (Xn, A) + ε

{∫
A

g(x, y)θn(dy)∫
g(x, y)θn(dy)

α(Xn, y)

+1A(Xn)
∫

g(x, y)θn(dy)∫
g(x, y)θn(dy)

{1− α(Xn, y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk(dy) α(x, y) = 1 ∧ π(y) θ?(x)
π̃(y) π(x)
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Interacting MCMC

Interacting MCMC : refinements

When sampling from the past of the auxiliary process, select the points :
introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x))

Pθn(Xn, A) = (1−εθn(x))P (Xn, A)+εθn(x)
{∫

A

g(x, y)θn(dy)∫
g(x, y)θn(dy)

α(Xn, y)

+1A(Xn)
∫

g(x, y)θn(dy)∫
g(x, y)θn(dy)

{1− α(Xn, y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk(dy) , α(x, y) = 1∧π(y) θ?(x)
θ?(y) π(x)

, εθ(x) = ε1∫
θ(dy)g(x,y)>0.
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Interacting MCMC

The equi-energy sampler

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
target density π

*

target density of the auxiliary proc.



Adaptive and Interacting MCMC algorithms

Interacting MCMC

The equi-energy sampler
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Regularized Interacting MCMC

I Instead on drawing from θn, this distribution can be regularized by
using a kernel

θ̃n(x) = (nhdn)−1
n∑
i=1

K

(
x− Yi
hn

)
,

where d is the dimension of the space, (hn) is a sequence of positive
numbers and K is a Borel measurable function (kernel) satisfying
K ≥ 0 and

∫
K = 1.

I Provided that limn→∞ hn = 0 and limn→∞ nhdn =∞,

Jn
def=
∫
|θ̃n(x)− θ?(x)|dx→ 0 as n→∞ (for all ε > 0, there exists

n0 s.t. for all n ≥ n0, P(Jn ≥ ε) ≤ e−rn).

I If K is the Gaussian kernel, then drawing from θ̃n instead of θn
amounts to add to add an independent Gaussian random variable

with covariance h
1/2
n Id... which is almost for free !
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Interacting MCMC

Interacting MCMC

I A family of transition kernels {Pθ, θ ∈ Θ} with invariant probability
distribution πθ : πθPθ = πθ

I An interacting MCMC is a process {(Xn, θn), n ≥ 0} on the product
space X×Θ defined as

I Simulation Given the past , draw

Xn+1 ∼ Pθn(Xn, ·)

I External adaptation update the parameter θn (here, a probability
distribution) according to

θn+1 ←→ computed from an auxiliary process {Yk, k ≤ n}
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Interacting MCMC

Adaptive and interacting MCMC in a nutshell

I A family of transition kernels {Pθ, θ ∈ Θ} with invariant
distribution : π? (internal adaptation) or πθ (external
adaptation).

We define a filtration Fn, and a process {(Xn, θn), n ≥ 0} s.t.

I component θn : Fn adapted with internal / external adaptation

I component Xn (process of interest) :

E [f(Xn+1) | Fn] =
∫
Pθn(Xn, dy) f(y).
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Convergence of the marginals

I Key ingredients to prove the ergodicity of an MCMC algorithms :

1. Markov Chain
2. the transition kernel is reversible w.r.t the target distribution

I These properties are lost when adapting the algorithms...

I Questions : Conditions to guarantee that the adaptation does not
destroy the convergence ?
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Convergence of the marginals

Adaptive MCMC : πθ = π?

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PNθn−N f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PNθn−N f(Xn−N )− π?(f)︸ ︷︷ ︸
ergodicity of the frozen chain

+ π?(f).
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Convergence of the marginals

Diminishing adaptation

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

I Generally problem specific

I ... But most often, amounts to check a condition of the type

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV ≤ C ‖θn − θn−1‖xxx

so that convergence in probability is implied by the adaptation
scheme.
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Convergence of the marginals

Containment condition

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0,

Mε(x, θ) := inf{n ≥ 1, ‖Pnθ (x, ·)− π?‖TV ≤ ε}

I Most often, deduced from ergodicity + homogeneity

I The easy case is when the ergodicity is uniform in θ :

sup
θ
‖Pnθ (x, ·)− π?‖TV ≤ ρ(n) U(x) lim

n
ρ(n) = 0

then
Mε(x, θ) ≤ ρ−1

(
εC−1U−1(x)

)
.
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Convergence of the marginals

Adaptive MCMC

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0.

Then
lim
n

sup
f,|f |∞≤1

|E [f(Xn)]− π?(f)| = 0
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Convergence of the marginals

Interacting MCMC

Interacting MCMC : πθPθ = πθ

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PNθn−N f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PNθn−N f(Xn−N )− πθn−N (f)︸ ︷︷ ︸
ergodicity of the frozen chain

+πθn−N (f)− π?(f)
]

+ π?(f).

I (same) : Diminishing adaptation, Containment condition

I Convergence of the invariant measures {πθn , n ≥ 0} to some π?
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Convergence of the marginals

Interacting MCMC

Interacting MCMC : πθPθ = πθ

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PNθn−N f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PNθn−N f(Xn−N )− πθn−N (f)︸ ︷︷ ︸
ergodicity of the frozen chain

+πθn−N (f)− π?(f)
]

+ π?(f).

I (same) : Diminishing adaptation, Containment condition

I Convergence of the invariant measures {πθn , n ≥ 0} to some π?
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Convergence of the marginals

Interacting MCMC

Interacting MCMC

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0.

3. (Convergence of the invariant distributions)

πθn(f)− π?(f)→P 0.

Then
lim
n
|E [f(Xn)]− π?(f)| = 0
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Convergence of the marginals

How to check these conditions ?

Spectral theory of V -uniformly ergodic operators

I Consider that X is a topological space endowed with its Borel
σ-field. For any positive function V , denote by

CV =
{
f continuous, ‖f‖V = sup

x∈X

|f(x)|
V (x)

<∞
}
.

I Denote by ‖P‖V = sup‖f‖V ≤1 ‖Pf‖V the operator norm.
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Convergence of the marginals

How to check these conditions ?

Spectral theory of V -uniformly ergodic operators

I Assumption : P is a Feller transition kernel on X which is
ψ-irreducible and aperiodic. Furthermore, there exist positive
numbers ε > 0 and C and a measurable function V , bounded on
compact sets and unbounded out of compact sets, s.t.
PV (x) ≤ (1− ε)V (x) + b1C(x).

I P is a Markov transition probability with a unique invariant
probability π such that, for some function V ≥ 1, ‖P‖V <∞ and
the spectral radius of P − π in CV is smaller than one :
‖Pn − π‖V ≤ Cρn.
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Convergence of the marginals

How to check these conditions ?

Continuity of the spectrum

I Since the eigenvalue 1 is separated from the rest of the spectrum
(with multiplicity 1), this part of the spectrum changes with P
continuously, just as in the finite dimensional space

I Denote by Σ(P ) the spectrum and Σ′(P ) = Σ(P ) \ {1}. Σ(P ) can
be separated from 1 by a closed curve Γ.

I The operator P can be decomposed as P = Π +R, where the
spectrum Σ(R) (on CV ) is outside the domain enclosed by Γ,
ΠR = RΠ = 0 and Π is a rank one operator

Πf(x) = π(f)1(x) .
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Convergence of the marginals

How to check these conditions ?

Continuity of the spectrum

I Assume that (Pn) is a sequence of Markov transition converging to
P in the operator norm.

I Then, for n sufficiently large, Pn = Πn +Rn, the spectrum of Rn
(on CV ) is outside the domain enclosed by Γ, ΠnRn = RnΠn = 0
where Πn is a rank one operator

Πnf(x) = πn(f)1(x) .

I In addition,

Πn =
1

2iπ

∫
Γ

(λ− Pn)−1dλ

and the condition ‖Pn − P‖V → 0 implies that ‖πn − π‖V → 0...
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Convergence of the marginals

How to check these conditions ?

Continuity of the spectrum

I According to the discussion above, the condition ‖Pθn − Pθ?‖V → 0
implies that ‖πθn − πθ?‖V → 0.

I This is enough for the regularized version of the interacting
MCMC... but this is not enough for the original version of the
equi-energy sampler

I A little bit more is needed to analyse the original equi-energy sampler
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Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞ and let
β ∈ (0, 1).

I On the auxiliary process :

I On the transition kernel P :
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Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞ and let
β ∈ (0, 1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

I On the transition kernel P :
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Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞ and let
β ∈ (0, 1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

I On the transition kernel P : P is phi-irreducible, π?P = π?, the
level sets {π ≥ p} are 1-small and

PV (x) ≤ λV (x) + b1C(x) V (x) =
(
π(x)

supX π

)−τ(1−β)

for some λ ∈ (0, 1), b < +∞, a set C, τ ∈ (0, 1].
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Convergence of the marginals

Conclusion of Section II

Under these conditions,

I the diminishing adaptation condition holds

I the containment condition holds.

I the invariant measures a.s. converge : limn πθn(f) = π?(f) a.s. for
any bounded Lipshitz function.

Hence, for any bounded function f

E [f(Xn)] −→n π?(f).
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Strong LLN

Sufficient Conditions for the existence of π? s.t. the strong LLN

1
n

n∑
k=1

f(Xk) −→a.s. π?(f)

is satisfied for any function f in a (hopefully large) class of functions.
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Strong LLN

Idea

Idea : use the Poisson equation

1
n

n∑
k=1

f(Xk)− π?(f) =
1
n

n∑
k=1

{f(Xk)− πθk−1(f)}︸ ︷︷ ︸
“Poisson term”

+
1
n

n∑
k=1

πθk−1(f)− π?(f)︸ ︷︷ ︸
Cesaro mean (is null when πθ = π?)

The first step consists in proving that

πθn(f) −→a.s. πθ?(f) for any f ∈ LV α , α ∈ [0, 1)
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Strong LLN

Idea

Decomposition

1
n

n∑
k=1

{f(Xk)− πθk−1(f)}

= n−1
n∑
k=1

{f̂θk−1(Xk)− Pθk−1 f̂θk−1(Xk−1)}︸ ︷︷ ︸
martingale term

+
1
n

n−1∑
k=1

{Pθk f̂θk(Xk)− Pθk−1 f̂θk−1(Xk)}︸ ︷︷ ︸
Remainder term (I)

+ n−1{Pθ0fθ0(X0)− Pθn−1fθn−1(Xn−1)}︸ ︷︷ ︸
Remainder term (II)

where f̂θ solves f − πθ(f) = f̂θ − Pθf̂θ.

I a.s. convergence of the martingale : conditions on the Lp-moments
of the increment ↪→ uniform-in-θ drift conditions on the
kernels Pθ.

I a.s. convergence of the remainder terms : regularity in θ of the
solution to the Poisson equation ↪→ strengthened
diminishing adaptation condition.
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of the increment ↪→ uniform-in-θ drift conditions on the
kernels Pθ.

I a.s. convergence of the remainder terms : regularity in θ of the
solution to the Poisson equation ↪→ strengthened
diminishing adaptation condition.
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Remainder term (II)

where f̂θ solves f − πθ(f) = f̂θ − Pθf̂θ.
I a.s. convergence of the martingale : conditions on the Lp-moments

of the increment ↪→ uniform-in-θ drift conditions on the
kernels Pθ.

I a.s. convergence of the remainder terms : regularity in θ of the
solution to the Poisson equation ↪→ strengthened
diminishing adaptation condition.
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Strong LLN

Result

Define

DV (θ, θ′) := sup
x

‖Pθ(x, ·)− Pθ′(x, ·)‖V
V (x)

Theorem
Assume

(i) (uniform ergodic behavior) Pθ is phi-irreducible,

PθV ≤ λV + b1C λ ∈ (0, 1), b < +∞,

and level sets of V are 1-small.

(ii) (strengthened D.A.)
∑
k

1
kV

α(Xk) DV α(θk, θk−1) < +∞ a.s.

(iii) (convergence of the invariant measures)

Then : if E[V (X0)] <∞, for any α ∈ [0, 1) and any f ∈ LV α

1
n

n∑
k=1

f(Xk) −→a.s. π?(f),
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Conclusion

I We prove convergence of the marginals for adaptive and interacting
MCMC samplers with the main ingredients

I diminishing adaptation
I ergodicity of the kernels + some form of uniformity in θ
I For external adaptation : a.s. convergence of the invariant measures
πθn

I Under the same assumptions, a L.L.N can be established.
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