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Aim and setting

e An underlying process X = (Xt)tzo,

e Observed at equally spaced discrete times :
X0, XAps 0 s XiAps

e On a fixed time interval [0,T]

Assuming X has jumps on [0,T], determine the "degree of ac-
tivity” of the jumps, when the time lag A, goes to O:

e finitely many 7

e Or, if infinitely many, how " infinite"” is it 7



Measuring the degree of activity - 1

If X is a Lévy process with Lévy measure F and "tail" F(x) =
F({y : |y| > z}):

e [(x) = mean number of jumps AX; = X; — X;_ with size
|AXy¢| > x over [0, 1]

e For all t >0 the equivalence holds:

S AKX <o as. /(|:c[7°/\1)F(da:) < 0
s<t



The set I of all » as such has the form

I =(B,00), or I=][B,00)
for some g€ [0,2], and 2 € I.

B is the Blumenthal-Getoor index, introduced in 1961.

B is a sensible measure of the jump activity, since

im 2°T¢ F(z) =0, limsup %7€ F(z) = oo

x—0 x—0

When X is stable, the BG index equals the stable index, and
B¢l



Measuring the degree of activity - 2

X is an Itdo semimartingale, that is

t 4
X, = Xo+/0b8ds—|—/oade8—|—JUI\/lPS

JUMPS = /Ot[[|a:|§1} x(uw —v)(ds,dx) —I—/ [[I«’E| xu(ds, dx)

Here u is the jump measure of X, and its predictable compensator
v can be factorized as

v(w;dt,de) = dt Fy(w,dz).



Assumptions:

e Oon b and o: they are locally bounded (random or not, dependent
on X or not).

e ONn Fy. see later.

Instantaneous index:

I={r>0: /(|x|7“ A1) Fy(de) < oo, 81 = inf(I})

Index over [0, t]:

I, = {r>0: /Ot ds/(|x|"“ A1) Fy(de) < oo}, B = inf(ly)

Warning: Those are random.



An unrealistic situation: the path of X; is fully observed on
[0,T]

T hen:

e o(w)t is known for t € [0,T]

e I(w)p is also known, because (outside a null set) r € Ip iff
D s<T A X" < o0.

Apart from I, the measures F; are "essentially’” unknown, even
under the (strong) additional assumption that Fi(w,dx) = F(dx)
IS non-random, independent of time.

This motivates the estimation of 3p, which is about the most
we can infer, concerning the measures F;, even in this unrealistic
situation.



T he main challenge

Consider the special case X = oW + Y, where Y is a (g-stable
process, so G (w) = 8.

Any increment AYX = XA, — X(;_1)a, Satisfies

APX = o APy + AL Py

(equality in law). Then:

e Recalling 8 <2 and A, — 0, with a large probability A?X

IS close to JA%/2W1 in law. those increments give essentially no
information on Y, and are of "order of magnitude” A}/z

e However if Y has a "big” jump at time S, the corresponding
increment is close to AYg.



Hence, one has to throw away all "small’ increments. However,
B is related to the behavior of F' near 0, hence to the "very
small” jumps of Y.

In practice one uses only increments bigger than a cutoff level

aAY for some w € (0,1/2).
Asymptotically:

e those increments are big because, since A}/Q << AY, the main
contribution is due to Y.

e those increments mostly contain a single "big"” jump, of size
of order at least AY.

e we still get some information on small jumps, because AY — O.



The same heuristics works for Itd semimartingales. This leads
to consider, for fixed @ € (0,1/2) and « > 0, the functionals

[t/ An]
Ulw, o, An)e = ), l{jarx|>ang):

i=1
which simply counts the number of increments whose magnitude
IS greater than aAY.

This way, we are retaining only those increments of X that are
predominantly made of contributions due to a single jump



T he key property

Again X = oW 4+ Y with Y (-stable for a while. Essentially,
U(w,a, Ap): is the same as, or close to, the number V (@, o, An)¢
of jumps of Y which are bigger than aA%, in the interval [O,t].

o V(w,a,Ayp): is a Poisson random variable with parameter
Ct/aP NP7,

(C = suitable constant). Hence

o AYTV(w, a,An); — C/aP (in probability),

ﬁw/z (AWV(@ o, Ay — C/oﬂ> . N(0,C/aP) (in law).



These properties carry over to U(w,a,Ayp): in the case above,
and also to more general semimartingales, subject to the follow-
ing assumption, where 0 < 8/ < 8 < 2 are non-random:

We have for all (w,t):

F=F+F'+F",

where

e F/ is locally of the B—stable form

Fl(ds) = —— <<+>1

(=)
27 T

dx,

{—z§‘)<w<0}>

for some predictable non-negative processes a(+) § ) zt(‘i_)
and zt(_).

{O<ac<zt )}



e F/ has a density, and has a Blumenthal-Getoor index < 3/2
and F/(R) = 0 if F/(R) = 0.

e F/ is singular and has a Blumenthal-Getoor index < 3.

e Plus some (weak) technical conditions on a§+),a§_),z§+) and
(=)
<t .



For example, any process of the following form satisfies the
assumption

dXy = bidt + o1 dWy + 6¢—dY; + 5;_dY,

where:
— § and &’ are cadlag adapted processes
— Y is B—stable

— Y’ is any Lévy process with Blumenthal-Getoor index less
that 8/2.



THEOREM Under the previous assumptions, and if

ﬁ/ ( (H) 4 (= >)d87

o AQWU(w,a,An)t — At/aﬁ in probability,

o 6w/2 (ABwU(w a, An)t — At/oﬂ) converges stably in law
JANMS
to a varlable which, conditionally on the process X is centered

Gaussian with variance A;/a”.

We also have the joint convergence (stably in law) for two or
more values of « and/or w.



T he estimators

We pick o € (0,1/2) and 0 < a < o/, and define

Iog(U(w, Q, An)T/U(w, Oé/, An)T)
log(a’/a) ’

Bn(wa G, Ckl) —

By the first part of the theorem, we have consistency:

Bn(wa &, Oé/) i /87

in restriction to the set where A1 > 0.

Another family of consistent estimator is
|Og(U(w, a, AR)T/U(wa a, 2ATL)T)
wlog 2 '

Bn(w,a) =



A central Iimit theorem

The second part of the key theorem, vields

THEOREM As soon as w < 2-|1-ﬁ/\525’ and in restriction to the
set {AT > 0},

1) the variables

1

Afﬁ/Q (Bn(wa &, O/) T 6)

converge stably in law to a variable which conditionally on the
process X is centered Gaussian with variance (o/?—a?) /A7 (log(a//a))?,



2) the variables

log(a//a)

1/2 (Bn(w, o 0) = B)

(T ~ T@aam)
U(W,O&l,An)t U(W,@,An)t
converge stably in law to a standard normal variable independent
of X.

(similar results hold for the other family of estimators).



e The qualifier “in restriction to the set {Ap > 0}" is essential
in this statement.

— On the (random) set {Ap > 0}, the jump activity index is
G.

— On the complement set { A7 = 0}, the number g is not the
jump activity index for X on [0,7T]. We do not know even
the behavior of Bn(w,a,a’) in probability, not to speak
about a central limit theorem. However we suspect that
any convergent subsequence as a limit strictly smaller than

B/2.



e [ hese results are model-free in a sense, because the drift
and the volatility processes are totally unspecified; on the
other hand the assumptions on the Lévy measures F; are
quite strong.

e When those assumptions fail, we do not know how to prove
the results, even in the case where X is a Lévy process.



0.1. Simulation Results

e The data generating process is dX;/Xg = o dW; 4 dY;

e Y iS a pure jump process, g—stable or Compound Poisson

(8=0).

e Stochastic volatility oy = vtl/Q

dv; = r(n — vy)dt 4+ yor! 2dBy + dJ,

e Leverage effect: E[dWdBy] = pdt, p < O

e With jumps in volatility: J is a compound Poisson process
with uniform jumps.



Simulations: 3 =1.25 and g =1
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Simulations: 8 = 0.75 and 8 =0.5
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0.2. Empirical Results: Intel & Microsoft 2005

INTC
JANS 2 secC 5 sec 15 sec
o 4 5 6 4 5 6 4 5 6
Qtr 1 1.70 1.69 1.69 1.86 1.87 1.76 1.61 1.36 1.46
Qtr 2 1.06 1.06 1.05 1.23 1.13 1.09 1.09 1.13 1.14
Qtr 3 1.15 1.20 1.40 1.20 1.21 1.18 1.27 1.34 1.45
Qtr 4 1.32 1.51 1.59 1.54 135 1.42 1.77 1.72 1.42

All Year 1.30 1.35 1.40 1.44 1.36 1.32 1.40 1.36 1.32




Ay
«

Qtr 1
Qtr 2

Qtr 3
Qtr 4
All Year

1.72
1.59
1.50
1.64
1.60

2 secC

1.92
1.60
1.60
1.79
1.71

1.94
1.43
1.63
1.72
1.66

1.74
1.60
1.52
1.82
1.66

MSFT
5 secC

1.86
1.48
1.54
1.66
1.62

1.86
1.56
1.63
1.65
1.66

1.75
1.47
1.66
1.71
1.65

15 sec

1.89
1.17
1.81
1.37
1.54

2.00
1.27
1.97
1.24
1.68
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