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Aim and setting

• An underlying process X = (Xt)t≥0,

• observed at equally spaced discrete times :

X0, X∆n, · · · , Xi∆n, · · ·

• on a fixed time interval [0, T ]

Assuming X has jumps on [0, T ], determine the ”degree of ac-
tivity” of the jumps, when the time lag ∆n goes to 0:

• finitely many ?

• or, if infinitely many, how ”infinite” is it ?



Measuring the degree of activity - 1

If X is a Lévy process with Lévy measure F and ”tail” F (x) =

F ({y : |y| > x}):

• F (x) = mean number of jumps ∆Xt = Xt − Xt− with size

|∆Xt| > x over [0,1]

• For all t > 0 the equivalence holds:∑
s≤t

|∆Xs|r < ∞ a.s. ⇔
∫

(|x[r∧1)F (dx) < ∞



The set I of all r as such has the form

I = (β,∞), or I = [β,∞)

for some β ∈ [0,2], and 2 ∈ I.

β is the Blumenthal-Getoor index, introduced in 1961.

β is a sensible measure of the jump activity, since

lim
x→0

xβ+ε F (x) = 0, lim sup
x→0

xβ−ε F (x) = ∞

When X is stable, the BG index equals the stable index, and

β /∈ I



Measuring the degree of activity - 2

X is an Itô semimartingale, that is

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs + JUMPS

JUMPS =
∫ t

0

∫
{|x|≤1}

x(µ− ν)(ds, dx) +
∫ t

0

∫
{|x|>1}

xµ(ds, dx)

Here µ is the jump measure of X, and its predictable compensator

ν can be factorized as

ν(ω; dt, dx) = dt Ft(ω, dx).



Assumptions:

• on b and σ: they are locally bounded (random or not, dependent

on X or not).

• on Ft: see later.

Instantaneous index:

Ii
t = {r ≥ 0 :

∫
(|x|r ∧ 1)Ft(dx) < ∞}, βi

t = inf(Ii
t)

Index over [0, t]:

It = {r ≥ 0 :
∫ t

0
ds

∫
(|x|r ∧ 1)Ft(dx) < ∞}, βt = inf(It)

Warning: Those are random.



An unrealistic situation: the path of Xt is fully observed on

[0, T ]

Then:

• σ(ω)t is known for t ∈ [0, T ]

• I(ω)T is also known, because (outside a null set) r ∈ IT iff∑
s≤T |∆Xs|r < ∞.

Apart from IT , the measures Ft are ”essentially” unknown, even

under the (strong) additional assumption that Ft(ω, dx) = F (dx)

is non-random, independent of time.

This motivates the estimation of βT , which is about the most

we can infer, concerning the measures Ft, even in this unrealistic

situation.



The main challenge

Consider the special case X = σW + Y , where Y is a β-stable
process, so βt(ω) = β.

Any increment ∆n
i X = Xi∆n −X(i−1)∆n

satisfies

∆n
i X = σ∆

1/2
n W1 + ∆

1/β
n Y1

(equality in law). Then:

• Recalling β < 2 and ∆n → 0, with a large probability ∆n
i X

is close to σ∆
1/2
n W1 in law. those increments give essentially no

information on Y , and are of ”order of magnitude” ∆
1/2
n

• However if Y has a ”big” jump at time S, the corresponding
increment is close to ∆YS.



Hence, one has to throw away all ”small” increments. However,
β is related to the behavior of F near 0, hence to the ”very
small” jumps of Y .

In practice one uses only increments bigger than a cutoff level

α∆$
n for some $ ∈ (0,1/2).

Asymptotically:

• those increments are big because, since ∆
1/2
n << ∆$

n , the main
contribution is due to Y .

• those increments mostly contain a single ”big” jump, of size
of order at least ∆$

n .

• we still get some information on small jumps, because ∆$
n → 0.



The same heuristics works for Itô semimartingales. This leads

to consider, for fixed $ ∈ (0,1/2) and α > 0, the functionals

U($, α,∆n)t =
[t/∆n]∑
i=1

1{|∆n
i X|>α∆$

n }.

which simply counts the number of increments whose magnitude

is greater than α∆$
n .

This way, we are retaining only those increments of X that are

predominantly made of contributions due to a single jump



The key property

Again X = σW + Y with Y β-stable for a while. Essentially,

U($, α,∆n)t is the same as, or close to, the number V ($, α,∆n)t

of jumps of Y which are bigger than α∆$
n , in the interval [0, t].

• V ($, α,∆n)t is a Poisson random variable with parameter

Ct/αβ ∆β$
n .

(C = suitable constant). Hence

• ∆β$
n V ($, α,∆n)t → C/αβ (in probability),

• 1

∆
β$/2
n

(
∆β$

n V ($, α,∆n)t − C/αβ
)
→ N (0, C/αβ) (in law).



These properties carry over to U($, α,∆n)t in the case above,

and also to more general semimartingales, subject to the follow-

ing assumption, where 0 ≤ β′ < β < 2 are non-random:

We have for all (ω, t):

Ft = F ′
t + F ′′

t + F ′′′
t ,

where

• F ′
t is locally of the β−stable form

F ′
t(dx) =

1

|x|1+β

(
a
(+)
t 1

{0<x≤z
(+)
t }

+ a
(−)
t 1

{−z
(−)
t ≤x<0}

)
dx,

for some predictable non-negative processes a
(+)
t , a

(−)
t , z

(+)
t

and z
(−)
t .



• F ′′
t has a density, and has a Blumenthal-Getoor index ≤ β/2

and F ′′
t (R) = 0 if F ′

t(R) = 0.

• F ′′′
t is singular and has a Blumenthal-Getoor index ≤ β′.

• Plus some (weak) technical conditions on a
(+)
t , a

(−)
t , z

(+)
t and

z
(−)
t .



For example, any process of the following form satisfies the

assumption

dXt = btdt + σtdWt + δt−dYt + δ′t−dY ′
t

where:

– δ and δ′ are càdlàg adapted processes

– Y is β−stable

– Y ′ is any Lévy process with Blumenthal-Getoor index less

that β/2.



THEOREM Under the previous assumptions, and if

At = =
1

β

∫ t

0

(
a
(+)
s + a

(−)
s

)
ds,

• ∆β$
n U($, α,∆n)t → At/αβ in probability,

• 1

∆
β$/2
n

(
∆β$

n U($, α,∆n)t − At/αβ
)

converges stably in law

to a variable which, conditionally on the process X is centered

Gaussian with variance At/αβ.

We also have the joint convergence (stably in law) for two or

more values of α and/or $.



The estimators

We pick $ ∈ (0,1/2) and 0 < α < α′, and define

β̂n($, α, α′) =
log(U($, α,∆n)T/U($, α′,∆n)T )

log(α′/α)
,

By the first part of the theorem, we have consistency:

β̂n($, α, α′) P−→ β,

in restriction to the set where AT > 0.

Another family of consistent estimator is

β̂′n($, α) =
log(U($, α,∆n)T/U($, α,2∆n)T )

$ log 2
.



A central limit theorem

The second part of the key theorem, yields

THEOREM As soon as $ < 1
2+β

∧ 2
5β, and in restriction to the

set {AT > 0},

1) the variables

1

∆
$β/2
n

(β̂n($, α, α′)− β)

converge stably in law to a variable which conditionally on the

process X is centered Gaussian with variance (α′β−αβ)/AT (log(α′/α))2,



2) the variables

log(α′/α)(
1

U($,α′,∆n)t
− 1

U($,α,∆n)t

)1/2

(
β̂n($, α, α′)− β

)

converge stably in law to a standard normal variable independent

of X.

(similar results hold for the other family of estimators).



• The qualifier “in restriction to the set {AT > 0}” is essential

in this statement.

– On the (random) set {AT > 0}, the jump activity index is

β.

– On the complement set {AT = 0}, the number β is not the

jump activity index for X on [0, T ]. We do not know even

the behavior of β̂n($, α, α′) in probability, not to speak

about a central limit theorem. However we suspect that

any convergent subsequence as a limit strictly smaller than

β/2.



• These results are model-free in a sense, because the drift

and the volatility processes are totally unspecified; on the

other hand the assumptions on the Lévy measures Ft are

quite strong.

• When those assumptions fail, we do not know how to prove

the results, even in the case where X is a Lévy process.



0.1. Simulation Results

• The data generating process is dXt/X0 = σtdWt + dYt

• Y is a pure jump process, β−stable or Compound Poisson
(β = 0).

• Stochastic volatility σt = v
1/2
t

dvt = κ(η − vt)dt + γv
1/2
t dBt + dJt,

• Leverage effect: E[dWtdBt] = ρdt, ρ < 0

• With jumps in volatility: J is a compound Poisson process
with uniform jumps.



Simulations: β = 1.25 and β = 1
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Simulations: β = 0.75 and β = 0.5
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Simulations: β = 0.25 and β = 0
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0.2. Empirical Results: Intel & Microsoft 2005

INTC
∆n 2 sec 5 sec 15 sec
α 4 5 6 4 5 6 4 5 6

Qtr 1 1.70 1.69 1.69 1.86 1.87 1.76 1.61 1.36 1.46
Qtr 2 1.06 1.06 1.05 1.23 1.13 1.09 1.09 1.13 1.14
Qtr 3 1.15 1.20 1.40 1.20 1.21 1.18 1.27 1.34 1.45
Qtr 4 1.32 1.51 1.59 1.54 1.35 1.42 1.77 1.72 1.42

All Year 1.30 1.35 1.40 1.44 1.36 1.32 1.40 1.36 1.32



MSFT
∆n 2 sec 5 sec 15 sec
α 4 5 6 4 5 6 4 5 6

Qtr 1 1.72 1.92 1.94 1.74 1.86 1.86 1.75 1.89 2.00
Qtr 2 1.59 1.60 1.43 1.60 1.48 1.56 1.47 1.17 1.27
Qtr 3 1.50 1.60 1.63 1.52 1.54 1.63 1.66 1.81 1.97
Qtr 4 1.64 1.79 1.72 1.82 1.66 1.65 1.71 1.37 1.24

All Year 1.60 1.71 1.66 1.66 1.62 1.66 1.65 1.54 1.68



1.5 1.75 2 2.25 2.5 2.75 3
0.0

0.5

1.0

1.5

2.0

α'/α

E
s
t
i
m
a
t
o
r
o
f
β

Degree of Jump Activity for INTC, 2005

1.5 1.75 2 2.25 2.5 2.75 3
0.0

0.5

1.0

1.5

2.0

α'/α

E
s
t
i
m
a
t
o
r
o
f
β

Degree of Jump Activity for MSFT, 2005


