Estimating the Degree of Activity of jumps in High Frequency Financial Data

joint with Yacine Aït-Sahalia

Aim and setting

- An underlying process $X = (X_t)_{t>0}$,
- observed at equally spaced discrete times :

$$
X_0, X_{\Delta_n}, \cdots, X_{i\Delta_n}, \cdots
$$

• on a fixed time interval $[0, T]$

Assuming X has jumps on $[0, T]$, determine the "degree of activity" of the jumps, when the time lag Δ_n goes to 0:

- finitely many ?
- or, if infinitely many, how "infinite" is it ?

Measuring the degree of activity - 1

If X is a Lévy process with Lévy measure F and "tail" $\overline{F}(x) =$ $F({y : |y| > x})$:

• $\overline{F}(x)$ = mean number of jumps $\Delta X_t = X_t - X_{t-}$ with size $|\Delta X_t| > x$ over $[0,1]$

• For all $t > 0$ the equivalence holds:

$$
\sum_{s\leq t} |\Delta X_s|^r < \infty \quad \text{a.s.} \quad \Leftrightarrow \quad \int (|x|^r \wedge 1) F(dx) < \infty
$$

The set I of all r as such has the form

$$
I = (\beta, \infty)
$$
, or $I = [\beta, \infty)$

for some $\beta \in [0,2]$, and $2 \in I$.

 β is the Blumenthal-Getoor index, introduced in 1961.

 β is a sensible measure of the jump activity, since

$$
\lim_{x \to 0} x^{\beta + \varepsilon} \overline{F}(x) = 0, \qquad \limsup_{x \to 0} x^{\beta - \varepsilon} \overline{F}(x) = \infty
$$

When X is stable, the BG index equals the stable index, and $\beta \notin I$

Measuring the degree of activity - 2

 X is an Itô semimartingale, that is

$$
X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + \text{JUMPS}
$$

JUMPS =
$$
\int_0^t \int_{\{|x| \le 1\}} x(\mu - \nu)(ds, dx) + \int_0^t \int_{\{|x| > 1\}} x\mu(ds, dx)
$$

Here μ is the jump measure of X, and its predictable compensator ν can be factorized as

$$
\nu(\omega; dt, dx) = dt F_t(\omega, dx).
$$

Assumptions:

- on b and σ : they are locally bounded (random or not, dependent on X or not).
- on F_t : see later.

Instantaneous index:

$$
I_t^i = \{r \ge 0 : \int (|x|^r \wedge 1) F_t(dx) < \infty\}, \qquad \beta_t^i = \inf(I_t^i)
$$

Index over $[0, t]$:

$$
I_t = \{r \ge 0 : \int_0^t ds \int (|x|^r \wedge 1) F_t(dx) < \infty \}, \qquad \beta_t = \inf(I_t)
$$

Warning: Those are random.

An unrealistic situation: the path of X_t is fully observed on $[0, T]$

Then:

- $\bullet \quad \sigma(\omega)_t$ is known for $t \in [0,T]$
- $I(\omega)_T$ is also known, because (outside a null set) $r \in I_T$ iff $\sum_{s\leq T} |\Delta X_s|^r < \infty$.

Apart from I_T , the measures F_t are "essentially" unknown, even under the (strong) additional assumption that $F_t(\omega, dx) = F(dx)$ is non-random, independent of time.

This motivates the estimation of β_T , which is about the most we can infer, concerning the measures F_t , even in this unrealistic situation.

The main challenge

Consider the special case $X = \sigma W + Y$, where Y is a β -stable process, so $\beta_t(\omega) = \beta$.

Any increment $\Delta^n_iX = X_{i\Delta_n} - X_{(i-1)\Delta_n}$ satisfies

$$
\Delta_i^n X = \sigma \Delta_n^{1/2} W_1 + \Delta_n^{1/\beta} Y_1
$$

(equality in law). Then:

• Recalling $\beta < 2$ and $\Delta_n \to 0$, with a large probability $\Delta_i^n X$ is close to $\sigma\Delta$ 1/2 $n^{1/2}W_1$ in law. those increments give essentially no information on Y, and are of "order of magnitude" $\Delta_n^{1/2}$

However if Y has a "big" jump at time S , the corresponding increment is close to ΔY_S .

Hence, one has to throw away all "small" increments. However, β is related to the behavior of F near 0, hence to the "very small" jumps of Y .

In practice one uses only increments bigger than a cutoff level

 $\alpha \Delta_n^{\varpi}$ for some $\varpi \in (0,1/2).$

Asymptotically:

• those increments are big because, since $\Delta_n^{1/2} << \Delta_n^{\varpi}$, the main contribution is due to Y .

• those increments mostly contain a single "big" jump, of size of order at least $\Delta_n^{\overline{\omega}}$.

• we still get some information on small jumps, because $\Delta_n^{\overline{\omega}} \to 0$.

The same heuristics works for Itô semimartingales. This leads to consider, for fixed $\varpi \in (0, 1/2)$ and $\alpha > 0$, the functionals

$$
U(\varpi,\alpha,\Delta_n)_t=\sum_{i=1}^{[t/\Delta_n]}1_{\{|\Delta_i^nX|>\alpha\Delta_n^{\varpi}\}}.
$$

which simply counts the number of increments whose magnitude is greater than $\alpha \Delta_n^{\overline{\omega}}$.

This way, we are retaining only those increments of X that are predominantly made of contributions due to a single jump

The key property

Again $X = \sigma W + Y$ with Y β -stable for a while. Essentially, $U(\varpi, \alpha, \Delta_n)_t$ is the same as, or close to, the number $V(\varpi, \alpha, \Delta_n)_t$ of jumps of Y which are bigger than $\alpha\Delta_n^{\varpi}$, in the interval $[0,t].$

• $V(\varpi, \alpha, \Delta_n)_t$ is a Poisson random variable with parameter

$$
Ct/\alpha^{\beta}\ \Delta_n^{\beta\varpi}.
$$

 $(C =$ suitable constant). Hence

 $\bullet \quad \Delta_n^{\beta\varpi}V(\varpi,\alpha,\Delta_n)_t \ \to \ C/\alpha^\beta$ (in probability),

•
$$
\frac{1}{\Delta_n^{\beta \varpi/2}} \left(\Delta_n^{\beta \varpi} V(\varpi, \alpha, \Delta_n)_t - C/\alpha^{\beta} \right) \to \mathcal{N}(0, C/\alpha^{\beta}) \text{ (in law)}.
$$

These properties carry over to $U(\varpi, \alpha, \Delta_n)_t$ in the case above, and also to more general semimartingales, subject to the following assumption, where $0 \leq \beta' < \beta < 2$ are non-random:

We have for all (ω, t) :

$$
F_t = F'_t + F''_t + F'''_t,
$$

where

 \bullet F'_t t' is locally of the $\beta-$ stable form

$$
F'_t(dx) = \frac{1}{|x|^{1+\beta}} \left(a_t^{(+)} 1_{\{0 < x \le z_t^{(+)}\}} + a_t^{(-)} 1_{\{-z_t^{(-)} \le x < 0\}} \right) dx,
$$
\nfor some predictable non-negative processes

\n
$$
a_t^{(+)}, a_t^{(-)}, z_t^{(+)}
$$
\nand

\n
$$
z_t^{(-)}.
$$

- F_t'' has a density, and has a Blumenthal-Getoor index $\leq \beta/2$ and F_t'' $f_t''(\mathbb{R}) = 0$ if F_t' $t'_{t}(\mathbb{R}) = 0.$
- F_t''' t'' is singular and has a Blumenthal-Getoor index $\leq \beta'.$
- Plus some (weak) technical conditions on $a_t^{(+)}$ \mathcal{F}^{\top} , a $(-)$ \mathcal{L}^{-1}, z $(+)$ $\mathcal{F}^{(+)}_{t}$ and z $(-)$ $\frac{(-)}{t}$.

For example, any process of the following form satisfies the assumption

$$
dX_t = b_t dt + \sigma_t dW_t + \delta_{t-} dY_t + \delta'_{t-} dY'_t
$$

where:

 δ and δ' are càdlàg adapted processes

-
$$
Y
$$
 is β -stable

 Y' is any Lévy process with Blumenthal-Getoor index less that $\beta/2$.

THEOREM Under the previous assumptions, and if

$$
A_t = \frac{1}{\beta} \int_0^t \left(a_s^{(+)} + a_s^{(-)} \right) ds,
$$

•
$$
\Delta_n^{\beta\varpi} U(\varpi, \alpha, \Delta_n)_t \rightarrow A_t/\alpha^{\beta}
$$
 in probability,

• 1 $\overline{\Delta_n^{\beta\varpi/2}}$ n $\left(\Delta_n^{\beta\varpi}U(\varpi,\alpha,\Delta_n)_t - A_t/\alpha^{\beta}\right)$ converges stably in law to a variable which, conditionally on the process X is centered Gaussian with variance A_t/α^{β} .

We also have the joint convergence (stably in law) for two or more values of α and/or ϖ .

The estimators

We pick $\varpi \in (0,1/2)$ and $0 < \alpha < \alpha'$, and define

$$
\widehat{\beta}_n(\varpi,\alpha,\alpha')\,\,=\,\frac{\log(U(\varpi,\alpha,\Delta_n)_T/U(\varpi,\alpha',\Delta_n)_T)}{\log(\alpha'/\alpha)},
$$

By the first part of the theorem, we have consistency:

$$
\widehat{\beta}_n(\varpi,\alpha,\alpha') \xrightarrow{\mathbb{P}} \beta,
$$

in restriction to the set where $A_T > 0$.

Another family of consistent estimator is

$$
\widehat{\beta}'_n(\varpi,\alpha) = \frac{\log(U(\varpi,\alpha,\Delta_n)_T/U(\varpi,\alpha,2\Delta_n)_T)}{\varpi \log 2}
$$

.

A central limit theorem

The second part of the key theorem, yields

THEOREM As soon as $\varpi < \frac{1}{2+\beta}$ $\Lambda \frac{2}{5}$ $\overline{\mathsf{5}\beta}$, and in restriction to the set $\{AT > 0\}$,

1) the variables

$$
\frac{1}{\Delta_n^{\varpi\beta/2}}\ (\widehat{\beta}_n(\varpi, \alpha, \alpha') - \beta)
$$

converge stably in law to a variable which conditionally on the process X is centered Gaussian with variance $(\alpha'^\beta-\alpha^\beta)/A_T(\log(\alpha'/\alpha))^2$, 2) the variables

$$
\frac{\log(\alpha'/\alpha)}{\left(\frac{1}{U(\varpi,\alpha',\Delta_n)_t}-\frac{1}{U(\varpi,\alpha,\Delta_n)_t}\right)^{1/2}}\ \left(\widehat{\beta}_n(\varpi,\alpha,\alpha')-\beta\right)
$$

converge stably in law to a standard normal variable independent of X.

(similar results hold for the other family of estimators).

- The qualifier "in restriction to the set $\{A_T > 0\}$ " is essential in this statement.
	- On the (random) set $\{A_T > 0\}$, the jump activity index is β .
	- On the complement set $\{A_T=0\}$, the number β is not the jump activity index for X on $[0, T]$. We do not know even the behavior of $\widehat{\beta}_n(\varpi, \alpha, \alpha')$ in probability, not to speak about a central limit theorem. However we suspect that any convergent subsequence as a limit strictly smaller than $\beta/2$.
- These results are model-free in a sense, because the drift and the volatility processes are totally unspecified; on the other hand the assumptions on the Lévy measures F_t are quite strong.
- When those assumptions fail, we do not know how to prove the results, even in the case where X is a Lévy process.

0.1. Simulation Results

- The data generating process is $dX_t/X_0 = \sigma_t dW_t + dY_t$
- Y is a pure jump process, β -stable or Compound Poisson $(\beta = 0).$
- Stochastic volatility $\sigma_t = v$ 1/2 t

$$
dv_t = \kappa(\eta - v_t)dt + \gamma v_t^{1/2}dB_t + dJ_t,
$$

- Leverage effect: $E[dW_t dB_t] = \rho dt$, $\rho < 0$
- With jumps in volatility: J is a compound Poisson process with uniform jumps.

Simulations: $\beta = 1.25$ and $\beta = 1$

Estimator Based on Two Truncation Levels

Simulations:
$$
\beta
$$
 = 0.75 and β = 0.5

Simulations:
$$
\beta = 0.25
$$
 and $\beta = 0$

0.2. Empirical Results: Intel & Microsoft 2005

