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Motivating Example: Hodges-Lehmann Estimator

ONE SAMPLE CASE: X1, . . . , Xn; define the Hodges-Lehmann estimator
for the location

median{1
2
(Xi + Xj) : 1 ≤ i < j ≤ n}

TWO SAMPLE CASE: X1, . . . Xn1 , Y1, . . . , Yn2 ; define the
Hodges-Lehmann estimator for the difference in location

median{(Xi − Yj) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.

We are interested in the asymptotic distribution of such estimators in
the case of dependent data.
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One Sample U-Statistics

Definition (Halmos 1946, Hoeffding 1948, von Mises 1947)

Given a process (Xi)i≥1 of iid random variables with marginal
distribution F and a symmetric kernel h : R2 → R, we define the
bivariate U- and V -statistics statistics with kernel h by

Un(h) :=
1(n
2

) ∑
1≤i<j≤n

h(Xi , Xj),

Vn(h) :=
1
n2

∑
1≤i,j≤n

h(Xi , Xj).

I U- and V -statistics are generalized means of h(Xi , Xj),
1 ≤ i < j ≤ n (resp. 1 ≤ i , j ≤ n)

I Analogously one can define m-variate U- and V-statistics
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Examples

I h(x , y) = 1
2(x − y)2 leads to the sample variance

Un(h) =
1

n − 1

n∑
i=1

(Xi − X̄ )2

I h(x , y) =
∫

(1(−∞,s](x)− F0(s))(1(−∞,s](y)− F0(s))w(s)dF0(s);

Vn(h) =

∫
(Fn(s)− F0(s))2w(s)dF0(s);

Cramer-von Mises test statistic for testing the hypothesis
H : F = F0.

I h(x , y) = log(‖x − y‖) leads to the Takens’ estimator of the
correlation dimension of the distribution F .
(Floris Takens (12.11.1940–20.06.2010))
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Hoeffding Decomposition I

The tool for the analysis of U-statistics:

θ := Eh(X1, X2)

h1(x) := Eh(x , X )− θ

h2(x , y) := h(x , y)− h1(x)− h1(y)− θ.

We obtain the decomposition of h and of the U-statistic

h(x , y) = θ + h1(x) + h1(y) + h2(x , y)

Un(h) = θ +
2
n

n∑
i=1

h1(Xi) + Un(h2)

The functions h1 and h2 satisfy
∫

h1(x)dF (x) = 0 and∫
h2(x , y)dF (x) = 0 (degeneracy)
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Hoeffding Decomposition II

The terms in the summands on the r.h.s. are uncorrelated (!) and thus

Var(
2
n

n∑
i=1

h1(Xi)) =
4
n

Var(h1(X1))

Var(Un(h2)) =
1(n
2

)Var(h2(X1, X2)).

I Generally, the linear term 2
n
∑n

i=1 h1(Xi) is dominating. Limit
theorems can be obtained by using classical limit theorems for
partial sums and a control of the remainder term Un(h2).

I Non-classical limit theory in the degenerate case, when
Var(h1(X )) = 0.
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Non-degenerate U-Statistics Limit Theorems

(1) Law of Large Numbers (Hoeffding 1961, Berk 1966)

Un(h) → θ a.s.

(2) Central Limit Theorem (Hoeffding 1948)
√

n(Un(h)− θ) → N(0, 4 Var(h1(X ))) in distribution,

(3) Law of the Iterated Logarithm (Sen 1972)

lim sup
n→∞

√
n√

2 log log n
(Un(h)− θ) = 2Var(h1(X )) a.s.

The functional versions of these limit theorems also hold.
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Degenerate U- Statistic Limit Theorems

Let h ∈ L2([0, 1]2) be degenerate and let (Xi)i≥1 be independent
U([0, 1])-distributed. Then

(1) Degenerate U-statistics CLT (Fillipova 1964)

n(Un(h)− θ) →
∫ ∫

h(x , y)dW0(x)dW0(y).

where (W0(t))0≤t≤1 is standard Brownian bridge.

(2) Degenerate U-statistics LIL (D., Denker, Philipp 1984, D. 1989)

lim sup
n→∞

1
n log log n

∑
1≤i<j≤n

h(Xi , Xj)

= sup
{∫ ∫

f (x)f (y)h(x , y)dxdy :

∫
f 2(x)dx = 1

}
a.s.
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Weakly Dependent Processes I

Definition (Absolutely regular process)

(i) Let (Ω,F , P) be a probability space and let A and B be two
sub-σ-fields of F . We then define

β(A,B) := sup
m∑

i=1

n∑
j=1

|P(Ai ∩ Bj)− P(Ai) P(Bj)|,

supremum taken over all partitions of Ω into set A1, . . . , Am ∈ A, all
partitions of Ω into sets B1, . . . , Bn ∈ B and all m, n ≥ 1.
(ii) The process (Xi)i≥1 is called absolutely regular, if for k →∞

β(k) := sup
n

β(Fn
1 ,F∞n+k ) → 0,

where F l
k is the σ-field generated by Xk , . . . , Xl .
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Weakly Dependent Processes II

More generally, we consider functionals of absolutely regular
processes, i.e. we assume that (Xi)i≥1 has a representation

Xi = f ((Zn+i)n∈Z),

where (Zn)n∈Z is an absolutely regular process and f : RZ → R
satisfies some continuity property.
Large classes of processes can be expressed in this way, e.g.

I ARMA processes
I Many dynamical systems Xn = T n(X0), e.g. if T : [0, 1] → [0, 1] is

expanding (Hofbauer, Keller 1984).
For details and more examples, see Borovkova, Burton, D. (2001).
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U-Statistics Ergodic Theorem

Theorem (Aaronson, Burton, D., Gilat, Hill, Weiss 1996)

If one of the following two conditions is satisfied,

(i) h is F × F almost everywhere continuous and bounded
(ii) the process (Xk )k≥1 is absolutely regular and h is bounded,

the U-statistics ergodic theorem holds, i.e.

1(n
2

) ∑
1≤i<j≤n

h(Xi , Xj) →
∫ ∫

h(x , y)dF (x)dF (y)

Aaronson et al. (1996) gave counterexamples in case the above
conditions are not satisfied: the U-statistic ergodic theorem may fail for
ergodic processes (Xi)i≥1.
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Dependent U-Statistics CLT

Theorem
Under some technical conditions on h(x , y) and (Xi)i≥1,

√
n(Un(h)− θ) → N(0, 4σ2),

where

σ2 := Var(h1(X1)) + 2
∞∑

i=2

Cov(h1(X1), h1(Xi))

I Absolutely regular processes: Yoshihara (1976)
I Functionals of absolutely regular processes: Denker and Keller

(1983, 1985), Borovkova, Burton, D. (2001)
I Strongly mixing processes: D., Wendler (2010)

Results on degenerate kernels have been obtaines by Babbel (1989),
Kanagawa, Yoshihara (1998), Leucht, Neumann (2010).
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Empirical U-Process CLT

Given a symmetric kernel f (x , y), define the empirical U-distribution
function

Un(t) =
1(n
2

) ∑
1≤i<j≤n

1{f (Xi ,Xj )≤t}

and the empirical U-process
√

n(Un(t)− U(t)), where
U(t) = P(f (X , Y ) ≤ t)..

Theorem (Serfling 1984, Arcones, Yu 1994, Borovkova, Burton,
D. 2001)

Let (Xi)i≥1 be a functional of an absolutely regular process. Then
under some technical conditions on f (x , y) and (Xi)i≥1,

(
√

n(Un(t)− U(t)))t≥0
D−→ (W (t))t≥0,

where (W (t))t≥0 is a mean-zero Gaussian process.
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One Sample Empirical U-Quantiles

Example: The Hodges-Lehmann estimator of location

median
{

Xi + Xj

2
: 1 ≤ i < j ≤ n

}

= inf

t :
2

n(n − 1)

∑
1≤i<j≤n

1{ 1
2 (Xi+Xj )≤t} ≥

1
2


is the 50% quantile of the empirical distribution Un(·) of the pairwise
means 1

2(Xi + Xj), 1 ≤ i < j ≤ n. More general, we define the empirical
(one sample) U-quantile

U−1
n (p) := inf {t : Un(t) ≥ p} .
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Empirical U-Quantile Process CLT

Theorem (Wendler, 2010)

Let (Xi)i≥1 be a functional of an absolutely regular process. Then
under some technical conditions, we have for any 0 < p1 < p2 < 1(√

n
(

U−1
n (p)− U−1(p)

))
p∈(p1,p2)

D−→
(

1
U ′(U−1(p))

W (U−1(p))

)
p∈(p1,p2)

The functional LIL also holds.
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Bahadur-Kiefer Representation

Basic tool in the treatment of the empirical U-quantiles is the
Bahadur-Kiefer representation, i.e.

U−1
n (p)− U−1(p) =

p − Un(U−1(p))

U ′(U−1(p))
+ Rn(p).

Theorem (Wendler, 2010)

Under the same technical assumptions as in the previous theorem

sup
p∈(p1,p2)

Rn(p) = o(n−
23
40 ) a.s.
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Two Sample Empirical U-Quantiles

The two sample Hodges-Lehmann estimator

median{(Xi − Yj) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.

is the 50% quantile of the empirical distribution Un1,n2(·) of the
differences Xi − Yj , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,

Un1,n2(t) =
1

n1 n2
#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : Xi − Yj ≤ t}

More generally, we define the two-sample empirical U-quantiles

Qn1,n2(p) = inf{t : Un1,n2(t) ≥ p}, 0 ≤ p ≤ 1.
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Two Sample U-Process, U-Quantile Process

The empirical U-distribution function and U-quantiles,

Un1,n2(t) =
1

n1 n2
#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : Xi − Yj ≤ t}

Qn1,n2(p) = inf{t : Un1,n2(t) ≥ p},

are the natural estimator of the distribution function and the quantiles
of X − Y , where X , Y are independent,

H(t) = P(X − Y ≤ t)
Q(p) = inf{t : H(t) ≥ p}.

We will investigate the asymptotic distributions of
√

n1 + n2(Un1,n2(t)− H(t))
√

n1 + n2(Qn1,n2(p)−Q(p)).
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Dependence in the Two Sample Problem

In the standard two sample problem,

X1, . . . , Xn1 ∼ F
Y1, . . . , Yn2 ∼ G

all observations are independent. We study two situations
1. Given are two stationary ergodic processes (Xi)i≥1 and (Yj)j≥1,

independent of each other.
2. Given is one stationary ergodic process (Xi)i≥1 and

Yj = Xn1+j , 1 ≤ j ≤ n2.

The asymptotic distributions of our statistics are the same in both
cases, at least for weakly dependent observations.
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Two Sample U-Statistics

The two sample empirical U-distribution function,

Un1,n2(t) =
1

n1 n2
#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : Xi − Yj ≤ t}

=
1

n1 n2

n1∑
i=1

n2∑
j=1

1{Xi−Yj≤t},

is a special case of a two sample U-statistic, defined as

Un1,n2 =
1

n1 n2

n1∑
i=1

n2∑
j=1

h(Xi , Yj).

We will begin our investigations by studying the asymptotic distribution
of Un1,n2 as n1, n2 →∞.
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Hoeffding Decomposition I

As in the case of independent observations, the analysis of the
asymptotic behavior of U-statistics uses the Hoeffding decomposition.
We introduce the following quantities,

θ = Eh(X , Y )

h1(x) = Eh(x , Y )− θ

h2(y) = Eh(X , y)− θ

g(x , y) = h(x , y)− h1(x)− h2(y)− θ,

and observe that

h(x , y) = θ + h1(x) + h2(y) + g(x , y).
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Hoeffding Decomposition II

The decomposition of the kernel h(x , y) leads to the Hoeffding
decomposition of the U-statistic,

Un1,n2 = θ +
1
n1

n1∑
i=1

h1(Xi) +
1
n2

n2∑
j=1

h2(Yj) +
1

n1 n2

n1∑
i=1

n2∑
j=1

g(Xi , Yj).

The functions h1(x), h2(y) have the property

Eh1(X ) = Eh2(Y ) = 0,

i.e.
∑n1

i=1 h1(Xi) and
∑n2

i=1 h2(Yi) are sums of mean zero random
variables. Moreover,

Eg(X , y) = Eg(x , Y ) = 0 (degenerate)
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Two Sample U-Statistic CLT

Theorem (D., Fried (2010))

Let (Xi)i≥1 and (Yi)i≥1 be functionals of absolutely regular processes
satisfying

∑∞
k=1 k β(k) < ∞ and assume that E |h(X , Y )|2+ε < ∞, for

some ε > 0. Then, as n1, n2 →∞ so that n1
n1+n2

→ λ ∈ (0, 1), we have

√
n1 + n2(Un1,n2 − θ) → N(0, σ2),

where

σ2 =
1
λ

(
Var(h1(X )) + 2

∞∑
i=2

Cov(h1(X1), h1(Xi))

)

+
1

1− λ

(
Var(h2(Y )) + 2

∞∑
i=2

Cov(h2(Y1), h2(Yi)

)
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Two Sample U-Statistic CLT: Idea of Proof

Lemma (D., Fried 2010)

Let (Xi)i≥1 and (Yi)i≥1 be functionals of absolutely regular processes
with mixing coefficients satisfying

∑∞
k=1 k β(k) < ∞. Then

E

 n1∑
i=1

n2∑
j=1

g(Xi , Yj)

2

≤ C n1 n2 (1)

where C is some constant, not depending on n1 and n2.

The proof uses generalized correlation inequalities, i.e. bounds on

Ef (ξ1, ξ2)− Ef (ξ′1, ξ
′
2)

where ξ′1, ξ
′
2 are independent with the same marginal distributions as

ξ1, ξ2.
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Two Sample U-Process/U-Quantiles Revisited

Recall the definition of the empirical U-distribution function and
U-quantiles:

Un1,n2(t) =
1

n1 n2
#{1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : Xi − Yj ≤ t}

=
1

n1 n2

n1∑
i=1

n2∑
j=1

1{Xi−Yj≤t}

Qn1,n2(p) = inf{t : Un1,n2(t) ≥ p},

together with

H(t) = P(X − Y ≤ t)
Q(p) = inf{t : H(t) ≥ p}.
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Two Sample Empirical U-Process CLT

Theorem (D., Fried 2010)

Let (Xi)i≥1 and (Yi)i≥1 be functionals of absolutely regular processes
satisfying

∑∞
k=1 kβ(k) < ∞. Let n1, n2 →∞ so that n1

n1+n2
→ λ ∈ (0, 1).

Then, for any t ∈ R,

√
n1 + n2(Un1,n2(t)− H(t)) → N

(
0,

σ2
1(t)
λ

+
σ2

2(t)
1− λ

)

in distribution, where

σ2
1(t) = Var(G(X1 − t)) + 2

∞∑
k=2

Cov(G(X1 − t), G(Xk − t))

σ2
2(t) = Var(F (Y1 + t)) + 2

∞∑
k=2

Cov(F (Y1 + t), F (Yk + t))
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Bahadur-Kiefer Representation

The asymptotic distribution of the empirical U-quantiles can be derived
from that of the empirical U-process with the help of the
Bahadur-Kiefer representation

Qn1,n2(p) = Q(p) +
p − Un1,n2(Q(p))

H ′(Q(p))
+ Rn1,n2 ,

where Rn1,n2 is a "small" remainder term.

Theorem (D., Fried 2010)

Let (Xi)i≥1 and (Yi)i≥1 be functionals of absolutely regular processes
with mixing coefficients β(k) satisfying

∑∞
k=1 kβ(k) < ∞. Then for any

0 < p < 1 we have

Qn1,n2(p) = Q(p) +
p − Un1,n2(Q(p))

H ′(Q(p))
+ Rn1,n2

where Rn1,n2 = oP( 1√
n1+n2

).
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Two Sample Empirical U-Quantiles CLT

Theorem (D., Fried 2010)

Let (Xi)i≥1 and (Yi)i≥1 be stationary, absolutely regular processes
satisfying

∑∞
k=1 kβ(k) < ∞. Let n1, n2 →∞ so that n1

n1+n2
→ λ ∈ (0, 1).

Then
√

n1 + n2(Qn1,n2(p)−Q(p))

−→ N

(
0,

1

(H ′(Q(p)))2

(
σ2

1(Q(p))

λ
+

σ2
2(Q(p))

1− λ

))
,

where σ2
1(Q(p)) and σ2

2(Q(p))) are defined as above.

Herold Dehling Empirical U-Quantiles Paris, 23-06-2010 28 / 30



Work in Progress

1. Process convergence of two-sample empirical U-process and
U-quantiles.

2. Study of the process

[λ n]∑
i=1

n∑
j=[λ n]+1

1{Xi−Xj≤t}, 0 ≤ λ ≤ 1,

as well as the associated U-quantile process.
3. Application to robust change-point tests with dependent data.
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