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Data Analysis, Data Mining
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N

Observations

Variables How to retrieve 
information?

N and p are large

1 p



Several goals to achieve

Extraction of code-vectors (prototypes, representative 
vectors): quantization

Definition and description of classes: 
clustering and typology

Representation and visualization of multidimensional data 

Forecasting vectors or trajectories

Very frequent case: how to manage with incomplete data

A posteriori allocation of supplementary observations



Examples: dimension 1 and 2
Dimension 1
existence of a natural order

well-separated

overlapped

Dimension 2
easy to visualize



Quantization                 Clustering

They are reciprocal problems

If the code-vectors are known
– the classes are built by the 
– nearest-neighbors method

If the classes are known
– the code-vectors are computed as the 

mean values

For dimension > 2, the visualization 
need specific methods (projections, 
PCA, …)



The code-vectors
Each code-vector (which is the prototype of one class) is a 
vector in  Rp

We denote by n the numbers of code-vectors (= the number of 
clases)

These vectors are also called 
– weight vectors (biological  vocabulary ) 
– prototypes (vectorial quantization vocabulary) 
– centroïdes (statistical vocabulary)

At time t, they are denoted by 
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Several similar methods for clustering and 
computing the code-vectors
I: Moving centers algorithm (Forgy algorithm), deterministic (MC)

II: Kohonen algorithm, batch version, deterministic (KBATCH)
It takes into account the neighborhood between classes

III: Simple Competitive Learning (SCL), stochastic version of the 
moving centers algorithm, k-means algorithm

IV: Stochastic Kohonen algorithm (SOM)
It takes into account the neighborhood between classes

Algorithms III et IV are adaptive algorithms:
Learning on-line algorithms

Goal: - to build well separated and homogeneous classes
- to compute  accurate and representative code-vectors



Classification Algorithms

Kohonen algorithm, 
Self-Organizing 
Maps (SOM)

Simple 
Competitive 
Learning (SCL), 
k-means

Stochastic

Batch Kohonen 
algorithm (KBATCH)

Moving Centers 
(Forgy, MC)

Deterministic

With neighborhoodNo neighborhood



I – Deterministic algorithm 
Moving centers (FORGY)

At each step, classes are defined by the nearest-neighbor 
method, the code-vectors are computed as the mean points of 
the classes, and repeat…

Starting from randomly chosen code-vectors, we define the 
classes, then the code-vectors, and so on.



Property : The distortion is decreasing

Limit code-vectors depend on the initial choice
The distortion (the error we get by replacing the data by the code-
vectors) decreases, the algorithm converges to a local minimum
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Ci is the code-vector of class Ai



II Batch Kohonen 
algorithm (KBATCH)

It generalizes the moving centers algorithm 
At each step, the classes are defined as before, and the code-
vectors are computed as the gravity centers of a subset which 
includes the class and the neighbor classes, 

The neighborhood structure is a priori defined, the initialization is 
randomly chosen. The algorithm produces “organization”: classes 
which are neighbor in the structure,  become neighbor in the data 
space.



III Stochastic Algorithm (SCL)

At each step, an observation is randomly picked.
Only one code-vector is updated: it is the nearest, i.e. the winning code-

vector. Competitive Learning. The mean distortion decreases.

Randomly
chosen data
x(t+1)

Winning  
code-vector  i*(t)

Updated
code-vector

* * *1( 1) ( ) ( )
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C C t x Cε ++
= + −

Randomly chosen initial code-vectors, 
on-line algorithm



Generalization of the SCL algorithm

– Stochastic on-line algorithm
– Takes into account the neighborhood of each class

Stochastic version of the BATCH algorithm

– Avoids some local minima
– Provides “organized” classes (see examples) and accurate 

code-vectors

IV Kohonen Algorithm
Self-Organizing Map (SOM)



The neighborhood structure

A neighborhood structure is defined over the classes. 

If  I={1, 2, …, n }, is the set of the indices, the neighborhood 
structure is defined by a function σ(i,j) which             
– is = 1 when i = j,  
– is symmetrical, 
– only depends on the distance between the indices
– is a decreasing function of this distance

binaryGaussian

i0i0
i0



The shape and the size of the neighborhoods
They are entirely defined by the neighborhood function, but for 
visualization purpose, they correspond to a simple geometric 
disposition: string, grid, cylinder, hexagonal network, etc.

Voisinage de 49 Voisinage de 25 Voisinage de 9

Voisinage de 7 Voisinage de 5 Voisinage de 3

Voisinage de 49 Voisinage de 25 Voisinage de 9

Voisinage de 7 Voisinage de 5 Voisinage de 3



The Kohonen algorithm

For a given state of the code-vectors C(n) and for an input x,
we denote by i0(C(n), x) the index of the winning code-vector, 
that is the index of which the codevector is the nearest of x.

Then the algorithm is defined as follows: 

If εt and σ  do not depend on t, it is a Markov Chain
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The winning code-vector and its neighbors are 
moved towards the input 



Example : 2 dimensional data

Neighborhoods on a string (Kohonen, 1995)

Learning algorithm: organization, and then quantization



2 dimensional data

Neighborhoods on a grid

Learning algorithm: organization, and then quantization



The algorithm (some mathematical hints)
The algorithm can be written

( ) ( ) ( )( 1) ( ) ( ( 1), ( ))n n n
tC t C t H x t C tε+ = − +

It is a stochastic algorithm, and we would like to use 
the  Robbins-Monro method, with the hypothesis 

2
t tandε ε∑ ∑= ∞ < ∞

But, this hypothesis does not allow us to solve the problem: 
This algorithm does not derive from a potential function, as long as 

data are distributed according to a continuous density function
H is not a gradient in the general case



Points of study
Convergence of the algorithm, when t tends towards infinity, 
when ε is constant or decreasing
Nature of stable limit states, uniqueness
Organization of the final state,
– in dimension 1, organization means “order”, 
– but in larger dimension?

Some references:
• Kohonen (82, 84) sketch of proof of convergence

• Cottrell-Fort (87) dimension 1, uniform distribution, 2 neighbors on a string

• Ritter et al. (86, 88) study the stationary state for any  dimension, (assuming that it exists)

• For dimension 1, extension to more general distributions by Bouton-Pagès (93,94), but without 
uniqueness of the stationary state, even after ordering

• For dimension 1, extension of the proof of organization with a more general neighborhood function 
Erwin et al. (92)

• Proof of the non existence of a potential function by Erwin et al. (92)

• Almost sure CV. towards an unique stationary state for  dimension 1, after reordering, for general 
distributions and neighborhoods (Fort-Pagès, 93,95, 97)

• CV in the multi-dimensional  frame (Sadeghi, 2001)



Convergence ?

One complete proof is available only in the one dimensional 
case (for the data and for the network)
(Cottrell, Fort, 1987, followed by other authors)

Some frames provide hints to try to rigorously prove the 
results which can be observed in numerical experiments
The tools : Markov Chains, Ordinary Differential Equation 
(ODE), Batch algorithm

(and some modified algorithms, like Neural Gas, Heske
algorithm, etc. have better properties)
There is a particular case: when the data are available in a 

finite database



Extended Distortion: « Cost function »
(finite database)

When the size of the database is finite, equal to N , one can prove 
that the algorithm derives from a potential (Ritter, Martinetz and 
Shulten result)
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This « potential » is not 
differentiable, and this property 
does not provide a true proof for 

convergence

However, it provides an intuitive 
interpretation 

of the behavior of the algorithm



Classes, Voronoï tessels

In any case, even if the convergence cannot be fully 
proved, the Kohonen algorithm computes the code-
vectors and  then the classes are defined as the 
associated Voronoï tessels

A Voronoï tessel (class) 
is defined as the set of the 
data which are nearest to 
Ci

(n) than to all other code-
vectors

codevectors

( )( )n
iA C



Comparison between the four algorithms

The four methods provide well-done  classes,  well-separated, 
homogeneous
Both stochastic algorithms are on-line algorithms, easy to develop, 
avoiding most part of local minima, and weakly depending on the 
initial choices of the code-vectors
Both Kohonen algorithms have nice properties of visualization, due 
to the organization property
SOM algorithm has all the desired properties

Kohonen algorithm, 
Self-Organizing 
Maps (SOM)

Simple 
Competitive 
Learning (SCL), 
k-means

Stochastic

Batch Kohonen 
algorithm (KBATCH)

Moving Centers 
(Forgy, MC)

Deterministic

W ith neighborhoodNo neighborhood

Kohonen algorithm, 
Self-Organizing 
Maps (SOM)

Simple 
Competitive 
Learning (SCL), 
k-means

Stochastic

Batch Kohonen 
algorithm (KBATCH)

Moving Centers 
(Forgy, MC)

Deterministic

W ith neighborhoodNo neighborhood



How to use the SOM for data analysis

The SOM algorithm groups the observations into classes
Each class is represented by its code-vector
Inside a class, the elements are similar and resemble  the 
elements of neighbor classes
The Kohonen classes can be grouped into larger super-classes 
which are easier to describe. These super-classes group only 
contiguous classes, due to the organization
This property provides a nice visualization along the Kohonen 
maps

In each unit of the map, one can represent the code-vector, the 
contents, by list or by graph.

Examples from Ibbou, Rousset, Gaubert, Mangeas, Debodt, Grégoire…



Example 1: 7-dimensional data 

Census of 1783 districts in 1936, 1954, 1962, 1968, 1975, 1982, 
1990.
French Rhône Valley districts, from mountain to seaside
Ardèche, Bouches-du-Rhône, Drôme, Gard, Hérault, Isère, 
Haute-Loire, Vaucluse
The values are divided by the sum of the 7 census for 
normalization reasons
Chi-square distance
Build a Kohonen map:
– 10 000 iterations, 8 by 8 squared grid, and the 64 classes are 

grouped into 5 super-classes (82% of the total inertia)



Ex 1: The data (extract))
CODE NOM POUR36 POUR54 POUR62 POUR68 POUR75 POUR82 POUR90
07001 ACCONS 0.178 0.147 0.137 0.113 0.118 0.154 0.153
07002 AILHON 0.196 0.146 0.117 0.103 0.098 0.127 0.213
07003 AIZAC 0.210 0.170 0.150 0.135 0.105 0.110 0.120
07004 AJOUX 0.304 0.173 0.143 0.123 0.097 0.085 0.076
07005 ALBA-LA-ROMAINE 0.158 0.122 0.131 0.145 0.144 0.137 0.164
07006 ALBON 0.257 0.190 0.157 0.127 0.107 0.083 0.079
07007 ALBOUSSIERE 0.164 0.150 0.144 0.139 0.138 0.120 0.144
07008 ALISSAS 0.125 0.121 0.147 0.133 0.125 0.161 0.188
07009 ANDANCE 0.137 0.145 0.135 0.139 0.155 0.138 0.151
07010 ANNONAY 0.121 0.125 0.142 0.160 0.160 0.150 0.143
07011 ANTRAIGUES 0.202 0.149 0.134 0.133 0.125 0.131 0.127
07012 ARCENS 0.187 0.146 0.152 0.145 0.128 0.122 0.120
07013 ARDOIX 0.151 0.139 0.122 0.130 0.141 0.152 0.166
07014 ARLEBOSC 0.199 0.159 0.149 0.143 0.129 0.113 0.108
07015 ARRAS-SUR-RHONE 0.147 0.158 0.155 0.155 0.128 0.122 0.135
07016 ASPERJOC 0.197 0.162 0.145 0.130 0.130 0.117 0.119
07017 ASSIONS 0.175 0.136 0.152 0.140 0.123 0.135 0.138
07018 ASTET 0.277 0.215 0.152 0.127 0.100 0.067 0.062
07019 AUBENAS 0.112 0.121 0.129 0.151 0.169 0.162 0.156
07020 AUBIGNAS 0.209 0.114 0.140 0.113 0.125 0.133 0.167
07022 BAIX 0.135 0.128 0.135 0.128 0.115 0.202 0.157
07023 BALAZUC 0.215 0.154 0.127 0.112 0.109 0.141 0.142
07024 BANNE 0.194 0.157 0.134 0.118 0.122 0.134 0.140
07025 BARNAS 0.262 0.175 0.153 0.133 0.095 0.089 0.093
07026 BEAGE 0.234 0.183 0.149 0.142 0.118 0.097 0.078
07027 BEAUCHASTEL 0.100 0.103 0.120 0.127 0.184 0.192 0.174
07028 BEAULIEU 0.175 0.153 0.147 0.136 0.136 0.132 0.122
07029 BEAUMONT 0.308 0.166 0.127 0.112 0.094 0.100 0.093
07030 BEAUVENE 0.227 0.167 0.166 0.142 0.105 0.099 0.094
07031 BERRIAS-ET-CASTELJAU 0.183 0.148 0.147 0.140 0.139 0.121 0.123
07032 BERZEME 0.221 0.184 0.141 0.147 0.105 0.111 0.091
07033 BESSAS 0.180 0.134 0.133 0.133 0.134 0.154 0.134
07034 BIDON 0.203 0.117 0.079 0.092 0.102 0.187 0.219
07035 BOFFRES 0.224 0.175 0.146 0.135 0.105 0.110 0.105
07036 BOGY 0.164 0.137 0.133 0.119 0.128 0.144 0.175
07037 BOREE 0.269 0.200 0.157 0.135 0.100 0.074 0.064
07038 BORNE 0.311 0.188 0.167 0.124 0.073 0.058 0.079
07039 BOZAS 0.208 0.177 0.164 0.144 0.114 0.106 0.088
07040 BOUCIEU-LE-ROI 0.212 0.163 0.145 0.147 0.116 0.104 0.113
07041 BOULIEU-LES-ANNONAY 0.115 0.116 0.126 0.137 0.157 0.166 0.183
07042 BOURG-SAINT-ANDEOL 0.091 0.090 0.107 0.173 0.168 0.181 0.190
07044 BROSSAINC 0.173 0.160 0.157 0.144 0.124 0.117 0.124
07045 BURZET 0.243 0.202 0.154 0.129 0.095 0.095 0.082
07047 CELLIER-DU-LUC 0.234 0.166 0.149 0.128 0.113 0.098 0.111
07048 CHALENCON 0.223 0.174 0.164 0.147 0.097 0.099 0.095
07049 CHAMBON 0.331 0.205 0.154 0.110 0.071 0.069 0.061
07050 CHAMBONAS 0.159 0.145 0.148 0.148 0.138 0.127 0.135
07051 CHAMPAGNE 0.131 0.129 0.129 0.132 0.143 0.155 0.182
07052 CHAMPIS 0.197 0.169 0.159 0.141 0.121 0.096 0.118
07053 CHANDOLAS 0.181 0.141 0.141 0.142 0.136 0.132 0.127



Ex 1: The districts, PCA versus SOM

No evidence for classes
(PCA)

64 organized classes
(SOM)



Example 1: 7-dimensional data (7 census 
of the French Rhône Valley districts from 
1936 to 1990), 1783 districts

The code-vectors are displayed over the 
2-dim map, and are « well » organized.
The 64 classes are grouped into 5 
super-classes

Contents of all the 64 classes in 
a Kohonen 2-dim map

The code-vectors have 7 components

Contents of the 5 super-classes(perfect organization)



The first four census



The last three census



Ex 2: Handwritten 
Characters
The characters are transformed into
256-dim vectors. These vectors are 
classified using a Kohonen algorithm 
and displayed on a 10 by 10 map.
They are well-organized. All the vectors 
are displayed here.

We can define 10 super-classes. 
Their mean values are computed, 
and we observe that digit 5 is missing, 
because the digits 5 belong 
to the same class than digit 3. 



Ex 3: Working patterns for part-time employment

566 part-time workers 
473 open-ended employment contracts, 93 fixed-term contracts
505 women, 61 men
During a week, at each quarter-hour, a binary code is filled by 
each individual: 1 if he works, 0 if not
So the dimension of each observation is 4×24×7=672
On another hand, each individual is known by a lot of individual
variables (sex, age, nature of contract, activity level, etc.)

Example: he work on Monday, Tuesday,  
Wednesday and Sunday a.m., with a 
small break

He works on Monday, Tuesday,
Wednesday , Thursday and Friday



10 classes and  5 super-classes 
(from Monday to Sunday)

E10

E9

D8

D7

C6

C5

B4

B3

A2

A1

10-unit Kohonen 
string (1-dim map)

We represent the 
code-vectors

Y-axis is a number 
between 0 and 1, 
proportion of individuals
in the class who are 
considered to be 
actively working at that
moment

The organization is 
visible

Each super-class groups 2 consecutive classes



Typology of the super-classes
A: Work neither nights, Saturdays or Sundays, and 
have a lower activity level on Wednesdays. The weekly 
report and the individual questionnaire converge.

B: Do not work nights; very limited activity levels Saturdays (slightly less than in 
the questionnaire); mostly active in the morning the other days of the week. With 
respect to the Sunday question, a clear divergence between the weekly report 
(60% are at work at 10AM) and the questionnaire (77% state they never work 
Sundays).

C: Do not work nights; mostly work Wednesday and Saturday morning with lower 
level of activity Sundays (and Mondays). With respect to the Sunday question, a 
slight divergence between the weekly report (30% are at work at 10AM) and the 
questionnaire (9% state they usually work Sundays).

D: A little night work but less than in the questionnaire; reduced activity level 
Saturdays and Sundays; mainly work Wednesday mornings (much lower activity 
levels Mondays and Tuesdays). Little divergence between the weekly report and 
the questionnaire.

E: A little night work (but more than in the questionnaire);  mostly work Monday 
or Friday afternoons with lower activity levels Saturdays and Sundays; slight 
divergence for Wednesday between weekly report (48% are at work at 4PM) and 
the questionnaire (64% state they usually works Wednesdays).

E
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D
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D
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C
6

C
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B
4
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3
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Multidimensional Scaling projection for the 
10 code-vectors

To verify the good organization of the 10 code-vectors



Ex 4: Forecasting for vectorial data with fixed 
size

Problem : predict a curve (or a vector)

Example : an electricity consumption curve for the next 24 hours, the 
time unit is the half-hour and one has to simultaneously forecast the 48 
values of the complete following day (data from EDF, or from Polish 
consumption)

First idea : to use a recurrence 
– Predict at time t, the value Xt+1 of the next half-hour
– Consider this predicted value as an input value and repeat that 48 times

PROBLEM : 
– with ARIMA, crashing of the prediction, which converges to a constant 

depending on the coefficients
– with neural non linear model, chaotic behavior due to theoretical reasons

New method based on Kohonen classification



The data

The power curves are quite 
different from one day to 
another

It strongly depends on 
– the season
– the day in the week
– the nature of the day 

(holiday, work day, 
saturday, sunday, ...)

Friday in June

Saturday in January



Method
Decompose the curve into three characteristics

the mean m, the variance σ2, the profile P defined by

j is the day, h is the half-hour

The mean and the variance are forecast with an  ARIMA model or with a 
Multilayer Perceptron, where the input variables are some lags, meteo
variables,  nature of the day
The 48 - vectors are normalized to compute the profile: their norms are 
equal to 1
Achieve a classification of the profiles with cylindrical 
neighborhood
For a given unknown day, build its typical profile and redress it (multiply 
by the standard deviation and add the mean)
Note that the origin is taken at 4 h 30: the value at this point is relatively  
stable from one day to another
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Classification of the profiles on a 10 by 10 cylinder

The distance between two profiles is computed with the same weight for each half-hour
The weather  does not  influence the profile : it acts only on the mean and the variance
Classification of the profiles, (vectors in R48, with  norm 1, and sum 0)



13 super-classes on the cylinder (that we can describe)



October to January
weekdays

Nov to
January

weekdays

May to July
September
weekdays

February
  March

weekdays

April
weekdays

August
weekdays

October to January
Saturday

April to Sept
Saturday

May to September
Sunday

April
Sat Sun

Feb
March

Sat
Sun

October
to
January
Sunday



Forecasting: corrected curves
For a day j, let aji be the number of instances of the day j in 
the class i 
Let Ci   be the code-vector of the class i 

The estimated profile of the day j is

This profile is corrected and the forecasted curve is
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Examples of real and forecast curves



Ex 5: Shocks on the Interest Rate Structure

The shocks of the interest rate structure (or deformations, or 
changes) are very important, since they modify the values of 
financial assets
Using Gaussian hypothesis, we can use a Monte Carlo 
simulation which is well adapted for short-term horizon, but fails 
when applied to long-term prediction
One can observe scenarios which tend to be explosive. They 
can give also negative values.

So to generate long-term scenarios still remain a problem hard 
to solve. Clearly, there are many complex relations which 
cannot be taken into account  in the usual modeling by 
Gaussian distribution

Use of double SOM for prediction



Generation of long-term paths
We propose a method to generate long-term paths of interest rate 
structures, positive for every step (to avoid any arbitrage), in order to 
evaluate path dependent asset prices over time.

It is a non parametric approach, without any a priori hypothesis 
(neither on the process, neither on the dynamics)
It is only based on past observed values
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Time

Rate

Long rate

Short rate

1987 1995

short rate (1 year): blue
long rate (15 years): pink

The Data set: 2088 interest rate 
structures of the US Treasury Notes 
and Bonds market between 
1/5/1987 to 5/10/1995 
( from one year to 15 years maturities).



Simulation Algorithm

To generate long-term path of interest rates structures, we use 
two SOM algorithms to form two classifications

One for the initial interest rate curve, 
One for the shocks of these curves

We compute the distributions of the deformations conditionally 
to the initial structures
We generate paths of the process, using Monte Carlo procedure

Interest rate shocks : deformations (or differences) of the 
interest rate structure on a 10 days lag, as recommended by 
the Basle Committee on Banking Supervision. 

Shock  =  Curve ( t )  - Curve ( t - 10 )
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It is clear that the explicative variables for the clustering are the slope (linked to the spread, i.e. 
the difference between the long term rate and the short term one) and the curvature.

Classification of the initial structures into 9 
classes after neutralization of the short term level

1-dimensional Kohonen map, with 9 classes



The Conditional Probabilities
Then, we classify the shocks using a 30-units one-dimensional 
SOM map. The number 30 (as well as 9 before) is chosen in 
order to maximize the indicators of good homogeneity and 
strong discrimination of the classes (Fisher, Wilks Statistics)
The discrimination comes from the spread, the curvature and 
the level of the short rate
Each shock can be associated to its initial curve (10 days 
before), and this fact allows to count the number of shocks of 
each class (among 30) associated to an initial structure 
belonging to each class (among 9)
So it is possible to compute the 9 empirical conditional 
distributions of shocks
We verify that they are all strongly different (without assuming it 
as an hypothesis). Relations between shocks and initial rate 
structures are confirmed .



Conditional Probabilities

Classes of IIRS
Classes of IRS 1 2 3 4 5 6 7 8 9 Population

1 0.00% 0.00% 0.00% 0.00% 1.81% 0.00% 0.00% 0.00% 0.00% 0.34%
2 2.37% 0.00% 0.00% 0.41% 2.33% 0.00% 0.00% 0.00% 0.00% 0.67%
3 7.10% 0.00% 0.00% 0.83% 0.26% 0.71% 0.00% 1.07% 2.01% 1.11%
4 1.18% 0.00% 0.88% 4.15% 2.07% 0.00% 1.88% 2.14% 2.01% 1.59%
5 1.78% 2.46% 1.75% 2.49% 3.10% 0.35% 0.00% 3.74% 0.00% 1.83%
6 5.33% 2.11% 1.75% 3.32% 3.36% 3.53% 0.47% 3.21% 4.02% 3.03%
7 1.18% 0.00% 0.00% 0.83% 2.33% 0.00% 1.88% 2.67% 0.00% 1.06%
8 7.10% 0.00% 0.00% 0.41% 0.00% 1.41% 0.00% 0.00% 6.03% 1.40%
9 7.69% 9.47% 7.89% 5.81% 3.10% 7.07% 8.45% 2.14% 6.03% 6.21%
10 6.51% 8.77% 13.16% 8.71% 8.53% 6.36% 7.04% 5.35% 2.51% 7.36%
11 1.18% 7.02% 7.89% 5.39% 6.72% 8.13% 4.69% 5.35% 2.01% 5.63%
12 6.51% 3.16% 3.51% 8.71% 4.65% 1.77% 5.16% 6.95% 6.03% 5.00%
13 3.55% 5.61% 1.75% 7.47% 2.58% 4.59% 0.47% 5.35% 5.53% 4.19%
14 1.78% 3.16% 0.00% 3.32% 2.84% 0.35% 1.41% 7.49% 1.51% 2.50%
15 5.33% 2.46% 3.51% 2.07% 0.78% 3.53% 0.47% 5.35% 4.52% 2.79%
16 0.00% 0.35% 0.00% 0.00% 2.33% 0.35% 0.00% 1.07% 0.00% 0.63%
17 2.96% 5.26% 4.39% 3.32% 6.72% 9.19% 7.98% 5.88% 3.02% 5.73%
18 3.55% 5.61% 10.53% 6.64% 3.36% 8.13% 15.49% 4.28% 4.52% 6.54%
19 7.69% 4.91% 6.14% 4.98% 2.07% 4.95% 4.23% 4.28% 6.03% 4.67%
20 4.73% 3.86% 5.26% 7.05% 2.84% 8.13% 4.69% 5.88% 9.55% 5.58%
21 1.18% 1.75% 0.88% 3.73% 4.91% 2.12% 1.88% 1.60% 1.51% 2.50%
22 5.33% 4.21% 0.88% 0.41% 1.55% 3.89% 1.41% 5.35% 6.53% 3.18%
23 4.73% 6.67% 3.51% 4.15% 6.46% 7.77% 8.45% 4.81% 7.54% 6.26%
24 1.18% 3.86% 1.75% 2.49% 8.01% 2.47% 4.23% 5.35% 5.03% 4.23%
25 4.14% 5.61% 7.89% 6.64% 3.10% 8.48% 4.69% 3.21% 7.54% 5.53%
26 1.78% 3.86% 0.00% 0.41% 2.58% 2.47% 3.76% 3.74% 4.02% 2.65%
27 2.96% 3.51% 4.39% 2.90% 4.91% 2.47% 4.23% 1.60% 0.00% 3.13%
28 1.18% 4.56% 3.51% 3.32% 2.58% 0.35% 5.16% 0.00% 2.01% 2.55%
29 0.00% 1.75% 2.63% 0.00% 3.10% 1.06% 1.41% 1.60% 0.50% 1.44%
30 0.00% 0.00% 6.14% 0.00% 1.03% 0.35% 0.47% 0.53% 0.00% 0.67%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Chi2
Unit1 140.00
Unit2 42.04
Unit3 85.48
Unit4 54.58
Unit5 151.07
Unit6 244.39
Unit7 55.38
Unit8 73.37
Unit9 59.87

Test du Chi2

We can reject the
independence hypothesis 

at a very high level of 
confidence (+/-100%



Simulating Paths on a Long Term Horizon

The procedure is the following :
Randomly draw an initial interest rate structure (IIRS)
Determine the winning unit of the SOM map associated with the 
initial interest rate structure (9 classes)
According to the conditional distribution of frequencies of the 
interest rate shocks, randomly draw a shock.
Apply the shock to the interest rate structure, take the result as 
IIRS
Repeat the procedure 125 times to construct an interest rate 
structure evolution on a five year horizon (125 times the 10 days 
covered by the interest rate shock).
For each simulation, repeat the procedure 1000 times to build 
the distribution of probability of interest rate structures, starting 
from the same initial interest structure.



Examples: distributions of 1-year rate and 
15-years rate observed on the simulation

Short rate distribution
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Long rate distribution
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•The simulation procedure is stable.
•Short rates are clearly more volatile than long rates.



Conclusion
We shown that the method does not generate any explosive 
path, even on a long-term horizon
No hypothesis is necessary (as mean reverting, or 
equilibrium, or Gaussian) to get only positive values

We have compared with the well-known Cox Ingersol Ross 
(CIR) interest rate model and use the moment method to verify 
that the theoretical and the simulated paths have the same 
properties. The results are quite good. The validation is 
conclusive.
We could get similar results using any method to compute the 
conditional probabilities, but the SOM classification is quite 
satisfactory and allows nice representation and easy 
interpretation of the classes



Ex 6: Adaptation of the Kohonen algorithm 
when there are missing values

x : p-dimensional data vector with missing values,
Mx : set of the numbers of missing components, subset of {1, 2, 
..., p}. 
(C1, C2, ..., Cn) : code-vectors of each class
A each step, we randomly draw an observation x
Compute the winning code-vector associated to x defined by  

where the distance 

is computed on the non-missing components of vector x.
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Two ways of using
First way of using

The observations which contain missing components are used for the 
learning stage together with the full data.
The distance is restricted to non-missing values, the winning code-
vector is defined as above, the updating is carried out only for non-
missing components.
For j = i 0, or j neighbor of i 0 , and for k ∉Mx,

( 1) ( ) ( 1)( ( 1) ( ))j j jC t C t t x t C tε+ = + + + −
Second way of using

The observations which contain too many missing values are not used         
for the learning stage. 

They are classified after computing the code-vectors, as additional 
observations, with the nearest neighbor rule, restricted to the non-missing 
components.

We put x in class i, where i is the winning unit (minimum of distance) 



Estimation of the missing values

If x is classified into class i, for each index k in Mx, one estimates xk
by : 

At the end of learning, there is « 0 neighbor », so the code-vectors are 
asymptotically near the class means. 

This method for estimation consists in estimating the missing values of 
a variable by the mean value of its class. 

It is clear that this estimation is all the more accurate as the classes are 
homogeneous and well separated one.

As it is very easy to consider a large number of classes, the classes 
are small in general, and the variance of each class is small.

,ˆk i kx C=



Computation of membership probabilities
It is also possible to use a probabilistic classification rule, by 
computing the membership probabilities for the supplementary 
observations (be they complete or incomplete), by putting:

Confirmation of the quality of the organization, since significant 
probabilities correspond to neighboring classes.
To estimate the missing values, one can compute the weighted 
mean value of the corresponding components. 
If x is an incomplete observation, and for each k in Mx, one 
estimates xk by : 

Distribution, confidence intervals, etc.
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Example : the countries
182 countries in 1996
– each country is described by seven ratios
– 114 countries with no-missing values 
– 52 countries with only one missing value
– 16 countries with 2 or more than 2 missing values

The measured variables are:
– annual population growth (ANCRX), 
– mortality rate (TXMORT), 
– illiteracy rate (TXANAL), 
– population proportion in high school (SCOL2), 
– GDP per head (PNBH), 
– unemployment rate (CHOMAG), 
– inflation rate (INFLAT)



Learning: computation of the code-vectors
One uses the 114 + 52 = 166 countries which are complete or 
almost complete (no more than one missing value)

Centered and standardized data

Kohonen map with 7 by 7 units

Rich countries in the top left hand corner, very poor ones in the 
top right hand corner. Ex-socialist countries are not very far from 
the richest, etc. 
As for the 16 countries which are classified after the learning as 
supplementary observations, the logic is respected. 
Monaco and Vatican are displayed with rich countries, and 
Guinea with very poor countries, etc.



The code-vectors after convergence (1500 
iterations)



The 182 countries on the map



Control of organization (heuristic)

Cuba : proba > 0.03, (blue), 0.06 for class (5, 2) in yellow

Significant membership probabilities



Ex 7:Classifications of trajectories in the 
market labor

3% sampling of a very large survey ( one million of observations), 
i.e. 30 000 individuals
14 variables from more than one hundred 
Between 1990 and 2002, all the active population except farmers
One observation is a couple (individual, year), each one is 
present 3 consecutive times 
The variables are: full or part-time, employment or not, reason if 
not, job contract, and so on.
All the variables are categorical, so we first transform the data into 
real-valued ones by using a Multiple Correspondence Analysis 
and keeping all the components for the computation (not for the 
visualization)



SOM over the MCA components

Axis 1: Unemployed, employed
Axis 2: Craftsmen, trade profession, self-employed
Axis 3: Clerks, part-time contracts
Axis 4: : Managers, professionals, full-time, not fixed term contracts
Axis 5: Operatives, fixed-term contracts, occasional works
Axis 6:  Seniority in unemployment, with alimonies

We classify the 30 000    45-dimensional observations on a (7 × 7) 
Kohonen map.
100 000 iterations (about 3 by observation).
We use the 45 components to keep the whole information.
No other preprocessing, they are already centered, no weighting
(the first components which are the most significant and the most 
variant will have naturally more weight).
In the following graphs, we only display the 6 first components of each 
observation ( those with the largest  variance).



SOM (first 6 components), 49-classes representation
Contiguity on the Kohonen map
At the left top, unemployed people
At the right top, craftsmen, self-employed
In the middle, the most frequent situation: operatives, clerks at the 
bottom
In the right middle, the managers, the professionals and technical 
workers,
At the left bottom, the part-time contracts, etc.

Employment

Unemployment



Distribution of the 
variable job-no job: 
yellow = unemployed, 
green = employed

Part-time (yellow),
no employment (green), 
full-time (violet, blue)



Defining 7 clusters
Hierarchical classification 
of the 49 code-vectors, to 
get 7 clusters (70% of 
explained variance)
These clusters can be 
considered as the 
segments of the labor 
market
They only contain 
contiguous classes (self-
organizing property)
Easy to describe

7 1

5

6 24

3

1: self-employed, 2: professionals, 
3: managers

4 to 7: clerks and  operatives from the best 
to the worst situation



Transition probabilities, simulated trajectories and 
classification

In fact, each individual is questioned three consecutive years.
His changes of clusters are observed only three times, so we 
have to reconstruct the trajectories (we cannot observe them).
Idea: to model these changes by a Markov chain, 
– To simulate trajectories by estimating the probability transitions
– To compute a limit distribution (if conditions do not change)

Trajectories along 13 years, starting from C1 in 1990
9.43% of the population belong to C1 in 1990
Class 1 is stable for 23% of the initial population
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For each initial state in 1990, 
we consider the set of trajectories 
which start from it, and we build 
7 one-dimensional Kohonen maps 
with 10 units, 
one map by starting situation

The code-vectors reveal typical 
dynamical behaviors



No 1 No 2 No 3 No 4 No 5 No 6 No 7 No 8 No 9 No10 

C1 
9.43% 22.81% 6.29% 11.42% 7.85% 9.69% 9.09% 7.53% 8.45% 8.49% 8.38% 

C2 
 

17.41% 9.02% 7.91% 9.54% 11.41% 13.52% 9.82% 11.76% 11.24% 7.47% 8.31% 

C3 
9.36% 9.62% 7.26% 8.62% 10.79% 13.14% 15.53% 8.19% 9.37% 6.87% 10.61% 

C4 
40.72% 8.82% 7.98% 8.56% 6.85% 9.44% 20.61% 13.97% 7.33% 7.83% 8.60% 

C5 
7.56% 9.22% 8.25% 9.26% 11.51% 12.44% 8.87% 7.72% 11.65% 12.00% 9.09% 

C6 
 

8.68% 11.29% 7.57% 9.91% 15.05% 13.79% 11.25% 8.29% 6.37% 6.99% 9.49% 

C7 
 

6.85% 9.44% 8.08% 13.14% 11.39% 11.48% 9.05% 9.54% 9.88% 8.22% 9.78% 

Classification of trajectories



Conclusion 

SOM is a good candidate for data mining, classification, 
visualization of large dimensional data
Can be used for prediction
– For fixed-size vectors
– For complex behavior usinf the initial curves and their possible 

deformations

Can be adapted to qualitative variables, by using Multiple 
components analysis, or by directly using the Burt tables or the
Complete Disjonctive tables  



Adaptatif (Ritter et Schulten)



Adaptatif (Ritter et Schulten)



Example : one dimensional data

xn x4 x3 x2 x1

Neighborhoods on a string

x1 x2 x3 x4 xn

x1x2 x3x4xn
Initial state

Organized 
final state

Decreasing or increasing disposition



Ex 2: PCA on the districts
(88% on axes 1 and 2)



Données manquantes (Brest)
Caractères
Trajectoires Cuba 2008
Emploi du temps Acseg 2002
Pollution (IWANN)

Courbes électriques (IWANN)
Double quantif pour prédiction IWANN 03



Classification of the initial interest rate 
structures into 9 classes, in a Kohonen string
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(count : 199)

•Class one corresponds to a specific shape (8% of the curves)
•The others are discriminated by the level (highly correlated with the short term rate 
level at 1 year)
•If we neutralizes the effect of the short term rate level, the code vectors of the 
classes take another form (in next slide)
•It is clear that the explicative variables for the clustering are the slope (linked to the 
spread, i.e. the difference between the long term rate and the short term one) and 
the curvature.



Interest Rate Trajectory
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Forward interest rates are all positives, at
each step, for each run.

Outputs of the Simulation Procedure



Clustering the classes
Advantages of the  Kohonen algorithm 

– The similar vectors belong to neighbor classes

– The typical profile is chosen as  representative of the class

– It is very simple to go to on the computation on new data, starting from the last values of 
the weights

To facilitate the interpretation of the classes, the 100 classes are grouped into 13 
classes, according to a hierarchical classification

The limits of the new classes corresponds to the greatest inter-classes distances 
for the 100-classes classification

One can observe that there is a significant arrangement on the map : from the 
top to the bottom, one can encounter successively the weekdays of Autumn and 
Winter, the weekdays of Spring and Summer, and the Saturdays and Sundays

These super classes are only used for representation



Distribution of the 182 countries according to their IDH 
level (from 1 to 6), small (1=green, 2=yellow), medium 
(3=blue, 4=violet), high (5=gray,6=red)


