ESTIMATING BIVARIATE TAILS

Clémentine PRIEUR®
joint work with
Elena DI BERNARDINOP and Véronique MAUME-DESCHAMPSP

*Université Joseph Fourier (Grenoble)
PISFA, Université Lyon 1

June 23, 2010 ESTIMATING BIVARIATE TAILS



Framework

Goal : estimating the tail of a bivariate distribution function.
Idea : a general extension of the Peaks-Over-Threshold method.

Tools :

@ a two-dimensional version of the Pickands-Balkema-de Haan
Theorem,

@ Yuri & Wiithrich's approach of the tail dependence.

Key words : Extreme Value Theory, Peaks Over Threshold method,
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The univariate POT method
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One-dimensional results

The univariate POT method

Generalized Pareto distribution

Main idea of POT : use of the generalized Pareto distribution (1) to
approximate the distribution of excesses over thresholds.

kxl .
Vieo(x) = 1—(13_ by, !fk;«éO,a>O, )
l1—e>, ifk=0,0>0,

and x >0 for k <0or0<x < ¢ for k> 0.

@ Let X1, X5, ... be a sequence of i.i.d random variables with unknown
distribution function F.

o Fix a threshold u. For x > u, decompose F as
F(x) = X < x] = (1 - PIX < u]) Fu(x — u) + PIX < u],

where F,(x) =P[X < x4+ u|X > u].
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One-dimensional results

The univariate POT method

Fisher-Tippet Theorem

Theorem (Fisher-Tippet Theorem)

Let X1, Xa,...,X, be an i.i.d. sequence with common d.f. F. If there
exist a sequence of positive numbers (a,)n>0 and a sequence (b,)n>0 of
real numbers such that
max{Xth, 000 ,Xn} — b
an

lim P

n—oo

= < X] = Hi(x), xeR, (2)

for a non-degenerate distribution function Hy(x), then Hy(x) is a
member of the Generalized Extreme Value Distribution family

g = | o (—(1 - kx)%) . ifk£0,
exp (—e™), if k=0,

where 1 — kx > 0, k € R. We write F € MDA(Hx).
k < 0 Fréchet, k = 0 Gumbel, kK > 0 Weibull.




One-dimensional results

The univariate POT method

One-dimensional Pickands-Balkema-de Haan Theorem

Let
o Fu(x)=PX—-u<x|X>u,
o xr :=sup{x € R| F(x) < 1} (i.e. xg is the right endpoint of F).

Theorem (Pickands-Balkema-de Haan Theorem)

F ¢ MDA(Hk) == lim sup ‘FU(X) = Vk,a(u)(x)‘ =0.

U=XF 0<x<xg—u

We deduce from the Pickands-Balkema-de Haan Theorem the POT
estimate in the univariate case

F(x) = (1= Fx(v)) Vg 5 (x — u) + Fx(u), for x> u.

References : MacNeil (1997,1999) and references therein.



In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem
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In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem

Framework

Setting :
e X, Y two real valued r.v. with continuous df Fx and Fy,

o the dependence between X and Y is described by a continuous and
symmetric copula C.

Notation and definitions :
Survival Copula
V (u, u2) €[0,1)%, C*(ur, tp) = g + tp — 1+ C(L — ug, 1 — wp).

Upper-tail dependence copula X,Y ~ U0, 1], with symmetric C,
uef0,1)/C*(1—u,1—u)>0. Then, ¥(x,y) € [0,1]?, one defines

CoP(x,y) :=P[X < F,Y(x),Y < F7 Y (y) | X > u, Y > 4]

with Fy(x) ::]P’[XSX|X>U,Y>U]:1—%.
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In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem

Modeling upper tail, Yuri & Wiitrich's approach

Theorem (Upper-tail Theorem; Juri and Wiithrich (2003))

Let C be a symmetric copula such that C*(1 — u,1 — u) > 0, for all
u > 0. Furthermore, assume that there is a strictly increasing continuous
function g : [0, 00) — [0, 00) such that

im C*(x(1 = u),1—u)
o C*(1—u,1—u)

= g(x), x€[0,0).

Then, there exists a 0 > 0 such that g(x) = x"g () for all x € (0, 0).
Further, for all (x,y) € [0,1]?

lim CP(x,y) = x+y—=1+G(g" " (1-x),g ' (1-y)) := C*%(x,y), (3)

with G(x,y) = y'g (;) V(x,y) € (0,1]2 and G := 0 on [0,1]?\ (0, 1]2.

o’
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In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem

Auxiliary result

Proposition (Embrechts, Kluppelberg & Mikosch, 1997)

Fx € MDA(Hk) is equivalent to the existence of a positive measurable
function a(-) such that, for1 — kx > 0 and k € R,

i
Umxm R T

1— Fx(u+ xa(u)) :{ (1—kx)k, ifk#0, (@)
e X, if k =0.

[(3)and(4)] = [ a 2D version of the Pickands-Balkema-de Haan Theorem]

o Juri & Wiithrich (2003) for a symmetric C and if Fx = Fy,

o Di Bernardino, Maume-Deschamps & P. (2010) for a symmetric C
even if Fx # Fy.
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In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem

Symmetric copula C, Fx # Fy

Theorem (2D Pickands-Balkema-de Haan Theorem)

X, Y real valued r.v. with continuous df Fx # Fy, C a symmetric
copula.

Assume Fx € MDA(Hy,), Fyv € MDA(Hy,) and 3 g such that C satisfies
the assumptions of the Upper-tail Theorem. Define

o uy = Fy (Fx(u)),
® xp, :=sup{x €R

Fx(x) < 1},

o xg, :=sup{y e R|Fy(y) <1},

o o ={(x,y):0<x<xp, —u,0<y <xp, —uy}.
Then 3 a;(-), i = 1,2 as in (4) such that

sup|P[X —u<x,Y —uy <y|X>uY > uy]
&

—C* (1 - g(1 = Vig oy (u)(¥)): 1 — (1 = Vi sy (un) (¥))) [—— 0.

u—>XFX
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In dimension 2 The framework

2D Pickands-Balkema-de Haan Theorem

Symmetric copula C, Fx # Fy

From (3), the term
cr G(]- - g(l - Vk1,al(u)(X))7 1- g(l - sz,az(uy)(y))) is equal to

1= g(1 = Vi ,ay()(X)) = 8(1 = Vi az(uy) (V)
+G(1 - thal(u)(x)? 1- sz,az(uy)(y))'
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

A new bivariate tail estimator

Context : F bivariate df with continuous marginals Fx, Fy. F is
assumed to have a stable tail dependence function / that is Vx, y > 0,
the following limit exists

lim t7 P (1 — Fx(X) < txor 1 — Fy(Y) < ty) = I(x,y).
Then define
lim £ (1 = Fx(X) < tx, 1 = Fy(¥) < ty) = R(x,y).

We have Vx,y >0, R(x,y) =x+y — I(x,y).

Asymptotic dependence R(1,1) # 0.

Asymptotic independence Vx,y >0, I(x,y) = x + y. It is equivalent to
R(1,1) = 0.
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Asymptotic dependence, symmetric C

Uper Tail Theorem of Juri & Wiithrich (2003) holds with

x+1-1(x,1)  R(x,1)

_ x+y—I(x,y) _R(xy)
X ="Z5m . T RLY

2—/(1,1)  R(1,1)

, G(x,y) =

Moreover ¥V x > 0, g(x) = x g(1/x) that is § = 1.

We estimate g(x) with the estimator of / in Einmahl, Krajina, Serger
(2008) :

~ 1 &
In(x,y) = PR Z ]-{R(X,-)>n7k,,><+1 or R(Y:)>n—kny+1}>
=1

where R(X;) is the rank of X; among (Xi,...,X,), and R(Y;) is the
rank of Y; among (Y1,...,Ys), i=1,...,n
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Estimating 6

We estimate g(x) by g(x) = %/(,,1(2)1)

We estimate G(x,y) by G(x,y) = X;i%,(”l(xl)y)

Finally, we estimate the unknown parameter 6 by

§_ log&(x) —log&(1/x)
log x ’

In practice, k is "optimized" for each value of x.
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Construction of the bivariate estimator
Convergence results

Estimating the tail of bivariate distributions

On simulations

Case 1 Burr(1) margins, C(u,v) Gumbel, x = 5. 10 samples of size
n = 2000.

theta

100 150 200 250 300

kn

Figure: Copula Gumbel (parameter 2).
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Construction of the bivariate estimator
Convergence results

Estimating the tail of bivariate distributions

On simulations

Case 2 Burr(1) margins, C(u, v) Survival Clayton, x = 5. 10 samples of
size n = 2000.

theta

100 150 200 250 300

kn

Figure: Copula Survival Clayton (parameter 1).
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Estimating the tail of bivariate distributions Construction of "l“ bivariate estimator
Convergence results

On simulations

Case 3 Burr(1) margins, C(u,v) = uv (independent copula), x = 3. 10
samples of size n = 2000.

theta

o \;;\‘v'rt""::zo»
7=

Figure: Independent Copula.
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).

Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y),
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).

Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by

F*(x,y) = An (B + Co) + Ff(u,y) + F3 (x.Ty) = 2 X0 Lixi<u, vi<ty)
with
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).

Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by

F*(x,y) = An (Ba+ Co) + Fi (. y) + F3 (x,Ty) = £ 3001 Lixcu, vi<ion)
with

_ 1 ~
° An =320l Lixisu, visav )
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).
Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by
F*(x,y) = An (Ba+ Co) + Fi (. y) + F3 (x,Ty) = £ 3001 Lixcu, vi<ion)
with

° Ap= % Z?:l 1{Xi>U, Yi>Ty b

e B,=1-g,(1- V;Xﬁx(x —u))—gn(l— V;Yﬁy(y —Ty)),
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).
Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by
F*(x,y) = An (Ba+ Co) + Fi (. y) + F3 (x,Ty) = £ 3001 Lixcu, vi<ion)
with

° Ap= % Z?:l 1{Xi>U, Yi>Ty b

e B,=1-g,(1- V;Xﬁx(x —u))—gn(l— V;Yvay(y —Ty)),

o C,=0Gn(1— Vieax(x—u), 1=V 5 (y— y)),

Nes
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Estimating the tail of bivariate distributions Construction of "l“ bivariate estimator
Convergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).

Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by

F*(x,y) = An (Ba+ Co) + Fi (. y) + F3 (x,Ty) = £ 3001 Lixcu, vi<ion)
with

An Z? 11>, visay )
0 Bi=1—-G(1—Vy o (x—u)) = &(1— Vi, o (v —v)),
o C, =

F

G ( ;xﬁx(x —u),l1- sz,ay(y — uY)),
Fi(u,y) = exp{—1n(— log(Fx(u)), — log(Fy ()},
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

New tail estimator

For a threshold u define Ty = Fy*(Fx(u)).

Then, for ;X, ox (resp. ](\y, oy) the MLE based on the excesses of X
(resp. Y), we estimate F(x,y) by

F*(x,y) = An (Ba+ Co) + Fi (. y) + F3 (x,Ty) = £ 3001 Lixcu, vi<ion)
with

An % Z?:l 1{Xi>U, Yi>Ty b
0 By=1-g,(1-V; 5 (x—u)—&(l— V4 5 (v —1y)),
Co=Gp(1— Vieax(x—u), 1=V 5 (y— y)),

o Fi(u,y) = exp{—n(— log(Fx(u)), — log(Fy (¥)))}.

F3(x,dy) = exp{—In(~ log(Fx (x)),— log(Fy (ay)))}.

—~
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

Distribution of excesses above u and uy :
Fuuy(X,y) =P(X —u<x,Y —uy <y|X>uY >uy).

Define F(x,y) =P (X > x, Y > y).
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

Distribution of excesses above u and uy :
Fuuy(X,y) =P(X —u<x,Y —uy <y|X>uY >uy).

Define F(x,y) =P (X > x, Y > y).
Then Vx > u, y > uy,

F(x,y)=F(u,uy) Fyuy(x—u,y —uy)+ F(u,y)+ F(x,uy) — F(u, uy).
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

Distribution of excesses above u and uy :
Fuuy(X,y) =P(X —u<x,Y —uy <y|X>uY >uy).

Define F(x,y) =P (X > x, Y > y).
Then Vx > u, y > uy,

F(x,y)=F(u,uy) Fyuy(x—u,y —uy)+ F(u,y)+ F(x,uy) — F(u, uy).

Main steps :
e using 2D Pickands-Balkema-de Haan Theorem, Fy 4, (x — u,y — uy) is
approximated by

C¥G<1 - g(l - ka,O'x(U)(X - U)), 1- g(l - VkY-,CTY(LlY)(.y - UY)))'
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

Distribution of excesses above u and uy :
Fuuy(X,y) =P(X —u<x,Y —uy <y|X>uY >uy).

Define F(x,y) =P (X > x, Y > y).
Then Vx > u, y > uy,
F(x,y) = F(u,uy) Fyuy (x—u,y —uy)+ F(u,y) + F(x, uy) — F(u, uy).

Main steps :
e using 2D Pickands-Balkema-de Haan Theorem, Fy 4, (x — u,y — uy) is
approximated by

C*(;(l - g(l - ka,O'x(U)(X - U)), 1- g(l - VkY-,CTY(LlY)(.y - UY)))'

e we estimate F(u uy) and F(u,uy) by

(u,uy) Zl{x <u Vi<uy},  F(uuy) Z {(Xi>u, Yi>uy}
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

e we estimate F(u,y) and F(x, uy) by
* Fi(u,y) = exp{~ln(~log(Fx(u)). ~log(Fy (1))

« B3 (x, uy) = exp{—l(—log(Fx (x)), —log(Fy (uy)))
with
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

e we estimate F(u,y) and F(x, uy) by |

* Fi(u,y) = exp{~In(~log(Fx(u)), ~log(Fy (y)))

x F3(x, uy) = exp{~T(~log(Fx (x)), ~log(Fy (uy)))
with

o Fx(u) (resp. Fy(uy)) the empirical estimates of Fx(u) (resp.
Fy(uy)),
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

e we estimate F(u,y) and F(x, uy) by |
* Fi(u,y) = exp{—In(—log(Fx(u)), —log(Fy  ()))
« B3 (x, uy) = exp{—l(—log(Fx (x)), —log(Fy (uy)))

esp. /ny(Uy)) the empirical estimates of Fx(u) (resp.

~ =

esp. l?;k,(y)) the 1D POT estimates of Fx(u) (resp.
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c |
onvergence results

Main steps of the construction

e we estimate F(u,y) and F(x, uy) by |
* Fi(u,y) = exp{—In(—log(Fx(u)), —log(Fy  ()))
« B3 (x, uy) = exp{—l(—log(Fx (x)), —log(Fy (uy)))

esp. /ny(Uy)) the empirical estimates of Fx(u) (resp.

~ =

esp. l?;k,(y)) the 1D POT estimates of Fx(u) (resp.

e we estimate uy by Uy = /A—_;l(IA-_X(u)).
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Estimating the tail of bivariate distributions Construction of the bivariate estimator
Convergence results

Assumptions on the marginals

The assumptions below are assumed both for Fx and Fy.

First order assumptions F is in the maximum domain of attraction of
Fréchet, that is 3o > 0 such that F(x) = x~*L(x) with L a slowly
varying function.
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c
onvergence results

Assumptions on the marginals

The assumptions below are assumed both for Fx and Fy.

First order assumptions F is in the maximum domain of attraction of
Fréchet, that is 3o > 0 such that F(x) = x~*L(x) with L a slowly
varying function.

Second order assumptions as in Smith (1987), we assume that L satisfies

L(tx)
L(x)

with ¢ positive and ¢(x) —— 0.

X——+00

SR2

=1+ k(t)p(x) + o(¢(x)), ¥V t >0, as x — o

Remark : Let R, be the set of p—regularly varying functions. Then,
excluding trivial cases ¢ € R,, for some p <0, and k(t) = c h,(t), with
ho(t) = [} uP~du.
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Estimating the tail of bivariate distributions Construction of the bivariate estimator
Convergence results

Univariate convergence results

Theorem (MLE Convergence Theorem, (Smith, 1987))

Assume L satisfies SR2. Let Zy,..., Zn, i.i.d from an unknown
distribution function F,,, where lim, .. m, = oo, lim, ., #» = 0. For

each m, we define a threshold u,, := f(m,) —— oo such that

VM ¢ p(F(my))

a—p n—oo

pw € (—o0,00).

We define k = —a~! and o,,, = f(m,)a~'. Then there exists a local
maximum (G, , km,) of the GPD log likelihood function, such that

Gmy p(1—k)(1+2kp)
N A N R
"\ 2 n—o0 p(—Kk(+p) |’
km, — k 1—k+kp
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c
onvergence results

Univariate convergence results

The previous result is written conditionally on N = m,,. In practice the
threshold v is fixed and N is considered as random. We give below a
version of the MLE Convergence Theorem, unconditionally on N.
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Construction of the bivariate estimator
Convergence results

Estimating the tail of bivariate distributions

Univariate convergence results

The previous result is written conditionally on N = m,,. In practice the
threshold v is fixed and N is considered as random. We give below a
version of the MLE Convergence Theorem, unconditionally on N.

Corollary (Di Bernardino, Maume-Deschamps & P., 2010)

Assume L satisfies SR2. Let n be the sample size and u,, := f(n) the
threshold, such that f(n) —— oo. Let N = N,, denote the random

number of excesses above u,. If

n(1 — Fx(un)) —— oo, (5)

V(T — Fx(un))e d(un) —— pla— p), (6)

then the MLE Convergence Theorem holds also unconditionally on N.
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Estimating the tail of bivariate distributions Construction of the bivariate estimator

Convergence results

A univariate central limit theorem

Below follows a clt for the absolute error :

Theorem (Di Bernardino, Maume-Deschamps & P.)

Suppose L satisfies SR2. Let n be the sample size, u, := f(n) —— oo
n— oo

and z, := f(n) —— oo such that Vs € [0,1] z,jsﬁ‘z’g('—zz';') — 1.
= w n—oo
Let N = N, denote the random number of excesses above up,.

Assume moreover (5), (6) and

log (z,,) 0
n(1— F(u,)) n—o° 7

z3(n(1 = F(un))) "2 ——0 . (7)

[F(F(n) £(n) = F*(F(n) f(n)] —2— # (v, 72).
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Construction of the bivariate estimator

Estimating the tail of bivariate distributions c
onvergence results

Convergence results in bivariate framework

Let n be the sample size.

We choose thresholds u; ,, = f1(n) (resp. ua, = fo(n)) for X (resp. Y)
and sequences z; , = fi(n) (resp. z», = f2(n)) satisfying assumptions of
the univariate clt.

We have

n |F(Fu(n)fi(n), Fa(n)fa(n)) = F*(Fi(n)fi(n), F2(n) fa(n))| —— 0.

Remark : we can replace f3(n) by ?2(n).

If C is twice continuously differentiable, in case of asymptotic
dependence, we can take Ve > 0

rn:min{n1/3_8, VA YNy }
log(f1(n)) Fx(fu(n) F1(n)) " log(fa(n Fx(fz ) F2(n))
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Comparison with Ledford & Tawn's model

Contents

@ Comparison with Ledford & Tawn's model
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Comparison with Ledford & Tawn's model

Ledford & Tawn's second order model

Model :
Let (Z1, Z2) a bivariate random vector with Fréchet margins.
P(Zy > 21,20 > 2p) = z; Pz, ?L(z1,22) with ¢1, ¢, > 0 and

L(z1,22) ~ g1(z1, 22)(1 + &2(21, 22) 2)* 257

) as z1,2zp — 00,
with g1 and g» homogeneous functions of order 0.

Notation :
o n=(a+a),
@ p1+ p2 =, usually 7 <0.
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Comparison with Ledford & Tawn's model

Ledford & Tawn's second order model

Asymptotic dependence if n =1 and L(t) - 0.
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Comparison with Ledford & Tawn's model

Ledford & Tawn's second order model

Asymptotic dependence if n =1 and L(t) - 0.
Asymptotic independence if n < 1 orif n =1 and L(t) — 0.
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Comparison with Ledford & Tawn's model

Ledford & Tawn's second order model

Asymptotic dependence if n =1 and L(t) - 0.

Asymptotic independence if n < 1 orif n =1 and L(t) — 0.

Case exact independence n = 1/2 (in that case we have § = 1/n = 2).
Case positive association 1/2 <n < 1orn=1and L(t) — 0.

Case negative association 0 < 7 < 1/2.
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Comparison with Ledford & Tawn's model

Ledford & Tawn's second order model

Asymptotic dependence if n =1 and L(t) » 0

Asymptotic independence if n < 1 orif n =1 and L(t) — 0.

Case exact independence n = 1/2 (in that case we have § = 1/n = 2).
Case positive association 1/2 <n < 1orn=1and L(t) — 0.

Case negative association 0 < 7 < 1/2.

e "Ledfor & Tawn does not work for extreme sets that are not
simultaneously extreme in all components."

e Note that there exist counter-examples to Ledford & Tawn models
(Schlather, 2001).

e They always work with Fréchet margins, by proceding with the
following transformations :

Zl, =—1/log FX(X) Z2, = —1/log Fy(Y)

What happens then with the rate when coming back to the initial
distributions?
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Simulation Study

Contents

© Simulation Study
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Simulation Study

Model Survival Clayton-Fréchet, asymptotic dependence

C(u,v) = utv—1+[(1—u) " +(1—v) "1 =1]"* (Survival Clayton copula),
Fx(x) = Fy(x) = exp (—1/x) (same margins, Fréchet distribution).

Figure: Bivariate distribution
Figure: Copula Survival Clayton. function Fx, y(x,y), with Fx = Fy,
for x >0,y > 0.
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Simulation Study

We introduce

*

F1 (x,y) = exp{—In(—log(Fx (x)), —log(Fy ("))},  (8)

F5 (x,y) =1—Th(1 - Fx (x),1—Fy (¥)), (9)

with I?)\(*(x) (resp. I?;*(y)) 1D POT tail estimator for X (resp. Y).

June 23, 2010 ESTIMATING BIVARIATE TAILS



Simulation Study

We introduce

*

F1 (x,y) = exp{—In(—log(Fx (x)), —log(Fy ("))},  (8)

F5 (x,y) =1—Th(1 - Fx (x),1—Fy (¥)), (9)

with I?)\(*(x) (resp. I?;*(y)) 1D POT tail estimator for X (resp. Y).

method ERRps ERR,
classical 1 0.009907416 | 0.01207137
classical 2 0.01203755 | 0.01466676

L&T 0.02218138 | 0.02702618

Y &W 0.01566613 | 0.01908789

Table: t = 100 simulations of size n = 1000, u1p, = U2y = n1/3/3 = 3.33333,
Zin = 22 = log n'/3 = 2.302585
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Simulation Study

Model Survival Clayton-Fréchet, asymptotic dependence

method | F (A(n)fa(n), fa(n)Fa(n)) | empirical variance
theoretic 0.8207367
classical 1 0.8216137 0.0001566896
classical 2 0.8160857 0.0002055914
L&T 0.8143 0.000713136
Y&W 0.8310827 0.0002599203

Table: t = 100 simulations of size n = 1000
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Simulation Study

Model Survival Clayton-Burr, asymptotic dependence

C(u,v) = utv—1+[(1—u) " +(1—v) "1 =1]"* (Survival Clayton copula),
Fx(x)=1—-(1+x)"% Fy(y)=1-(1 —i—y)_2 (Burr(1), Burr(2)).

Figure: Bivariate distribution
Figure: Copula Survival Clayton. function Fx,y(x,y), with Fx = Fy,
for x >0,y > 0.
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Simulation Study

Model Survival Clayton-Burr, asymptotic dependence

method ERR.ps ERR,o
classical 1 0.01308886 | 0.01578057
classical 2 | 0.01285705 0.000192

L&T 0.01558348 | 0.01878820

Y &W 0.01685493 | 0.02128565

Table: t = 100 simulations of size n = 1000, u , = n*/3/3 = 3.33333,
21, = log n'/3 = 2.302585, uz, = v/3.33333, z2,, = 1/2.302585

method F (ﬂ(n)?l(n), fz(n)?z(n)) empirical variance
theoretic 0.8294288
classical 1 0.8375733 0.0001816101
classical 2 0.836 0.000192
L& T 0.8210546 0.0005832912
Y & W 0.8313332 0.0006985493

Table: t = 100 simulations of size n = 1000



Simulation Study

Model Independent-Burr, asymptotic independence

C(u,v) =

u v (Independent copula),
Fx(x)=1—(14+x)71, Fy(y) =1— (1 +y)~2 (Burr(1), Burr(2)).

Figure: Bivariate distribution
Figure: Copula Independent. function Fx y(x,y), with Fx = Fy,
for x >0,y > 0.
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Simulation Study

Model Independent-Burr, asymptotic independence

method ERR.ps ERR,o
classical 1 0.01039948 0.01297756
classical 2 0.02041998 0.01987981

L&T 0.00343821 | 0.004290557

Y &W 0.003974741 | 0.004960096

Table: t = 100 simulations of size n = 1000

method | F (fl(n)?l(n), fz(n)?z(n))
theoretic 0.8013436
classical 1 0.811743
classical 2 0.820857

L&T 0.7979054

Y & W 0.8053183

Table: t = 100 simulations of size n = 1000, u , = n*/3/3 = 3.33333,
21, = log n'/3 = 2.302585, w2, = v/3.33333, z2,, = 1/2.302585
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Simulation Study

Loss-ALAE

Data examined by Frees and Valdez (1998) with
X Pareto (1.122), Y Pareto (2.118), Copula Gumbel with parameter 1.4.

1+X7(1+><1’4)1/1‘4

We then get g(x) = > pi/Ta

We choose

o up, = 10000 x n'/3 = 114471.4, z,,, = 1.7471 =
UlpnXZip= 200 000.

o typ = Fy (Fx(u1n)), z2n =3 = tnp X 22, = 100000.

We get the estimate
P (Loss < 200000, ALAE < 100000) = 0.9513696.

Hence P (Loss > 200000, ALAE > 100 000) = 0.0067029.

We compare with the empirical probability 0.006 (see Beirlant, Dierckx &
Guillou, 2010).
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Simulation Study

Loss-ALAE

ALAE
8
I

Loss

Figure: Loss-ALAE.
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Simulation Study

Loss-ALAE

Example : for k, = 840 we get
P (Loss < 200000, ALAE < 100000) = 0.9506583, that is an absolute

error equal to 8.436013 x 107° and a relative error equal to
8.835904 x 107°.

Figure: Sensibility with respect to 10 < k, < 1500.
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Simulation Study

Loss-ALAE

060

Figure: Zoom for 10 < k, < 50. Figure: Zoom for 500 < k, < 1150.
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Simulation Study

Summary

* a new and different approach for estimating bivariate tails,
* we need neither Ledford & Tawn assumptions nor unit Fréchet margins,

* as for L & T estimate, it is particularly interesting when dealing with
asymptotic independence.
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Simulation Study

|deas for future developments

* get the optimal rate, a central limit theorem?

* use the bivariate tail estimator I?*(x,y) to obtain estimation of
bivariate upper-quantile curves, for high levels .

* application to the estimation of bivariate Value-at-Risk for large « :

VaRa(F) = {(x,y) € (F1(n), +00) x (Fa(n), +00) : F*(x,y) = al.
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Thank for your attention!
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