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Framework

Goal : estimating the tail of a bivariate distribution function.

Idea : a general extension of the Peaks-Over-Threshold method.

Tools :

a two-dimensional version of the Pickands-Balkema-de Haan
Theorem,
Yuri & Wüthrich’s approach of the tail dependence.

Key words : Extreme Value Theory, Peaks Over Threshold method,
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The univariate POT method

Generalized Pareto distribution

Main idea of POT : use of the generalized Pareto distribution (1) to
approximate the distribution of excesses over thresholds.

Vk,σ(x) :=

{
1−

(
1− kx

σ

) 1
k , if k 6= 0, σ > 0,

1− e
−x
σ , if k = 0, σ > 0,

(1)

and x ≥ 0 for k ≤ 0 or 0 ≤ x < σ
k for k > 0.

Let X1,X2, . . . be a sequence of i.i.d random variables with unknown
distribution function F .
Fix a threshold u. For x > u, decompose F as

F (x) = P[X ≤ x ] = (1− P[X ≤ u])Fu(x − u) + P[X ≤ u],

where Fu(x) = P[X ≤ x + u |X > u].
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Fisher-Tippet Theorem

Theorem (Fisher-Tippet Theorem)

Let X1,X2, . . . ,Xn be an i.i.d. sequence with common d.f. F . If there
exist a sequence of positive numbers (an)n>0 and a sequence (bn)n>0 of
real numbers such that

lim
n→∞

P
[
max{X1,X2, . . . ,Xn} − bn

an
≤ x

]
= Hk(x), x ∈ R, (2)

for a non-degenerate distribution function Hk(x), then Hk(x) is a
member of the Generalized Extreme Value Distribution family

Hk(x) =

{
exp

(
− (1− k x)

1
k

)
, if k 6= 0,

exp (−e−x) , if k = 0,

where 1− k x > 0, k ∈ R. We write F ∈ MDA(Hk).

k < 0 Fréchet, k = 0 Gumbel, k > 0 Weibull.
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The univariate POT method

One-dimensional Pickands-Balkema-de Haan Theorem

Let
Fu(x) = P[X − u ≤ x |X > u],
xF := sup{x ∈ R |F (x) < 1} (i.e. xF is the right endpoint of F ).

Theorem (Pickands-Balkema-de Haan Theorem)

F ∈ MDA(Hk) ⇔ lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x)− Vk,σ(u)(x)
∣∣ = 0.

We deduce from the Pickands-Balkema-de Haan Theorem the POT
estimate in the univariate case

F̂ ∗(x) = (1− F̂X (u))Vbk,bσ(x − u) + F̂X (u), for x > u.

References : MacNeil (1997,1999) and references therein.
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Framework

Setting :
X , Y two real valued r.v. with continuous df FX and FY ,
the dependence between X and Y is described by a continuous and
symmetric copula C .

Notation and definitions :
Survival Copula
∀ (u1, u2) ∈ [0, 1]2, C∗(u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2).

Upper-tail dependence copula X ,Y ∼ U [0, 1], with symmetric C ,
u ∈ [0, 1) /C∗(1− u, 1− u) > 0. Then, ∀ (x , y) ∈ [0, 1]2, one defines

Cup
u (x , y) := P[X ≤ F̃ −1

u (x),Y ≤ F̃ −1
u (y) |X > u,Y > u]

with F̃u(x) := P[X ≤ x |X > u,Y > u] = 1− C∗(1−x∨u,1−u)
C∗(1−u,1−u) .

June 23, 2010 ESTIMATING BIVARIATE TAILS



One-dimensional results
In dimension 2

Estimating the tail of bivariate distributions
Comparison with Ledford & Tawn’s model

Simulation Study

The framework
2D Pickands-Balkema-de Haan Theorem

Modeling upper tail, Yuri & Wütrich’s approach

Theorem (Upper-tail Theorem; Juri and Wüthrich (2003))

Let C be a symmetric copula such that C∗(1− u, 1− u) > 0, for all
u > 0. Furthermore, assume that there is a strictly increasing continuous
function g : [0,∞)→ [0,∞) such that

lim
u→1

C∗(x(1− u), 1− u)

C∗(1− u, 1− u)
= g(x), x ∈ [0,∞).

Then, there exists a θ > 0 such that g(x) = xθg
( 1

x

)
for all x ∈ (0,∞).

Further, for all (x , y) ∈ [0, 1]2

lim
u→1

Cup
u (x , y) = x+y−1+G (g−1(1−x), g−1(1−y)) := C∗G (x , y), (3)

with G (x , y) := yθg
(

x
y

)
∀ (x , y) ∈ (0, 1]2 and G :≡ 0 on [0, 1]2 \ (0, 1]2.

June 23, 2010 ESTIMATING BIVARIATE TAILS



One-dimensional results
In dimension 2

Estimating the tail of bivariate distributions
Comparison with Ledford & Tawn’s model

Simulation Study

The framework
2D Pickands-Balkema-de Haan Theorem

Auxiliary result

Proposition (Embrechts, Kluppelberg & Mikosch, 1997)

FX ∈ MDA(Hk) is equivalent to the existence of a positive measurable
function a(·) such that, for 1− k x > 0 and k ∈ R,

lim
u→xF

1− FX (u + x a(u))

1− FX (u)
=

{
(1− k x)

1
k , if k 6= 0,

e−x , if k = 0.
(4)

[(3)and(4)]⇒ [ a 2D version of the Pickands-Balkema-de Haan Theorem]

Juri & Wüthrich (2003) for a symmetric C and if FX = FY ,
Di Bernardino, Maume-Deschamps & P. (2010) for a symmetric C
even if FX 6= FY .
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Symmetric copula C , FX 6= FY

Theorem (2D Pickands-Balkema-de Haan Theorem)

X, Y real valued r.v. with continuous df FX 6= FY , C a symmetric
copula.
Assume FX ∈ MDA(Hk1), FY ∈ MDA(Hk2) and ∃ g such that C satisfies
the assumptions of the Upper-tail Theorem. Define

uY = F−1
Y (FX (u)),

xFX := sup{x ∈ R |FX (x) < 1},
xFY := sup{y ∈ R |FY (y) < 1},
A := {(x , y) : 0 < x ≤ xFX − u, 0 < y ≤ xFY − uY }.

Then ∃ ai (·), i = 1, 2 as in (4) such that

sup
A

∣∣∣∣P[X − u ≤ x ,Y − uY ≤ y
∣∣X > u,Y > uY

]
− C∗G(1− g(1− Vk1,a1(u)(x)), 1− g(1− Vk2,a2(uY )(y))

)∣∣∣∣−−−−→u→xFX

0.
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Symmetric copula C , FX 6= FY

From (3), the term
C∗G

(
1− g(1− Vk1,a1(u)(x)), 1− g(1− Vk2,a2(uY )(y))

)
is equal to

1− g(1− Vk1,a1(u)(x))− g(1− Vk2,a2(uY )(y))

+G
(
1− Vk1,a1(u)(x), 1− Vk2,a2(uY )(y)

)
.
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A new bivariate tail estimator

Context : F bivariate df with continuous marginals FX , FY . F is
assumed to have a stable tail dependence function l that is ∀ x , y ≥ 0,
the following limit exists

lim
t→0

t−1P (1− FX (X ) ≤ tx or 1− FY (Y ) ≤ ty) = l(x , y).

Then define

lim
t→0

t−1P (1− FX (X ) ≤ tx , 1− FY (Y ) ≤ ty) = R(x , y).

We have ∀ x , y ≥ 0, R(x , y) = x + y − l(x , y).

Asymptotic dependence R(1, 1) 6= 0.

Asymptotic independence ∀ x , y ≥ 0, l(x , y) = x + y . It is equivalent to
R(1, 1) = 0.
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Asymptotic dependence, symmetric C

Uper Tail Theorem of Juri & Wüthrich (2003) holds with

g(x) =
x + 1− l(x , 1)
2− l(1, 1)

=
R(x , 1)
R(1, 1)

, G (x , y) =
x + y − l(x , y)

2− l(1, 1)
=

R(x , y)

R(1, 1)
.

Moreover ∀ x > 0, g(x) = x g(1/x) that is θ = 1.

We estimate g(x) with the estimator of l in Einmahl, Krajina, Serger
(2008) :

l̂n(x , y) =
1
kn

n∑
i=1

1{R(Xi )>n−knx+1 or R(Yi )>n−kny+1},

where R(Xi ) is the rank of Xi among (X1, . . . ,Xn), and R(Yi ) is the
rank of Yi among (Y1, . . . ,Yn), i = 1, . . . , n.
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Estimating θ

We estimate g(x) by ĝ(x) = x+1−l̂n(x,1)

2−l̂n(1,1)
.

We estimate G (x , y) by Ĝ (x , y) = x+y−l̂n(x,y)

2−l̂n(1,1)
.

Finally, we estimate the unknown parameter θ by

θ̂ =
log ĝ(x)− log ĝ(1/x)

log x
.

In practice, k is "optimized" for each value of x .
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On simulations

Case 1 Burr(1) margins, C (u, v) Gumbel, x = 5. 10 samples of size
n = 2000.
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Figure: Copula Gumbel (parameter 2).
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On simulations

Case 2 Burr(1) margins, C (u, v) Survival Clayton, x = 5. 10 samples of
size n = 2000.
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Figure: Copula Survival Clayton (parameter 1).
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On simulations

Case 3 Burr(1) margins, C (u, v) = u v (independent copula), x = 3. 10
samples of size n = 2000.
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Figure: Independent Copula.
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New tail estimator

For a threshold u define ûY = F̂−1
Y (F̂X (u)).

Then, for k̂X , σ̂X (resp. k̂Y , σ̂Y ) the MLE based on the excesses of X
(resp. Y), we estimate F (x , y) by

F̂ ∗(x , y) = An (Bn + Cn)+ F̂ ∗1 (u, y)+ F̂ ∗2 (x , ûY )− 1
n

∑n
i=1 1{Xi≤u,Yi≤buY }

with
An = 1

n

∑n
i=1 1{Xi>u,Yi>buY },

Bn = 1− ĝn(1− VbkX ,bσX
(x − u))− ĝn(1− VbkY ,bσY

(y − ûY )),

Cn = Ĝn
(
1− VbkX ,bσX

(x − u), 1− VbkY ,bσY
(y − ûY )

)
,

F̂ ∗1 (u, y) = exp{−l̂n(− log(F̂X (u)),− log(F̂Y
∗
(y)))},

F̂ ∗2 (x , ûY ) = exp{−l̂n(− log(F̂X
∗
(x)),− log(F̂Y (ûY )))}.
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(x − u))− ĝn(1− VbkY ,bσY

(y − ûY )),
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(x − u))− ĝn(1− VbkY ,bσY

(y − ûY )),
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June 23, 2010 ESTIMATING BIVARIATE TAILS



One-dimensional results
In dimension 2

Estimating the tail of bivariate distributions
Comparison with Ledford & Tawn’s model

Simulation Study

Construction of the bivariate estimator
Convergence results

New tail estimator

For a threshold u define ûY = F̂−1
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(x − u))− ĝn(1− VbkY ,bσY

(y − ûY )),
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Main steps of the construction

Distribution of excesses above u and uY :
Fu,uY (x , y) := P (X − u ≤ x ,Y − uY ≤ y |X > u,Y > uY ).

Define F (x , y) = P (X > x ,Y > y).

Then ∀ x > u, y > uY ,

F (x , y) = F (u, uY )Fu,uY (x −u, y −uY )+F (u, y)+F (x , uY )−F (u, uY ).

Main steps :
• using 2D Pickands-Balkema-de Haan Theorem, Fu,uY (x − u, y − uY ) is
approximated by

C∗G(1− g(1− VkX ,σX (u)(x − u)), 1− g(1− VkY ,σY (uY )(y − uY ))
)
.

• we estimate F (u, uY ) and F (u, uY ) by

F̂ (u, uY ) =
1
n

n∑
i=1

1{Xi≤u,Yi≤uY }, F̂ (u, uY ) =
1
n

n∑
i=1

1{Xi>u,Yi>uY }.
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Construction of the bivariate estimator
Convergence results

Main steps of the construction

• we estimate F (u, y) and F (x , uY ) by

? F̂ ∗1 (u, y) = exp{−l̂n(−log(F̂X (u)),−log(F̂Y
∗
(y)))

? F̂ ∗2 (x , uY ) = exp{−l̂n(−log(F̂X
∗
(x)),−log(F̂Y (uY )))

with
F̂X (u) (resp. F̂Y (uY )) the empirical estimates of FX (u) (resp.
FY (uY )),

F̂ ∗X (x) (resp. F̂ ∗Y (y)) the 1D POT estimates of FX (u) (resp.
FY (uY )).

• we estimate uY by ûY := F̂−1
Y (F̂X (u)).
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Assumptions on the marginals

The assumptions below are assumed both for FX and FY .

First order assumptions F is in the maximum domain of attraction of
Fréchet, that is ∃α > 0 such that F (x) = x−αL(x) with L a slowly
varying function.

Second order assumptions as in Smith (1987), we assume that L satisfies

SR2
L(tx)

L(x)
= 1 + k(t)φ(x) + o(φ(x)), ∀ t > 0, as x →∞

with φ positive and φ(x) −−−−−→
x→+∞

0.

Remark : Let Rρ be the set of ρ−regularly varying functions. Then,
excluding trivial cases φ ∈ Rρ, for some ρ ≤ 0, and k(t) = c hρ(t), with
hρ(t) =

∫ t
1 uρ−1du.
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Univariate convergence results

Theorem (MLE Convergence Theorem, (Smith, 1987))

Assume L satisfies SR2. Let Z1, . . . , Zmn i.i.d from an unknown
distribution function Fumn

where limn→∞mn =∞, limn→∞
mn
n = 0. For

each mn we define a threshold umn := f (mn) −−−→
n→∞

∞ such that

√
mn c φ(f (mn))

α− ρ
−−−→
n→∞

µ ∈ (−∞,∞).

We define k = −α−1 and σmn = f (mn)α
−1. Then there exists a local

maximum (σ̂mn , k̂mn ) of the GPD log likelihood function, such that

√
mn

 bσmn
σmn
− 1

k̂mn − k

 d−−−→
n→∞

N

 µ(1−k)(1+2kρ)
1−k+kρ

µ(1−k)k(1+ρ)
1−k+kρ

 ;M−1

 .
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Univariate convergence results

The previous result is written conditionally on N = mn. In practice the
threshold u is fixed and N is considered as random. We give below a
version of the MLE Convergence Theorem, unconditionally on N.

Corollary (Di Bernardino, Maume-Deschamps & P., 2010)

Assume L satisfies SR2. Let n be the sample size and un := f (n) the
threshold, such that f (n) −−−→

n→∞
∞. Let N = Nn denote the random

number of excesses above un. If

n(1− FX (un)) −−−→
n→∞

∞, (5)

√
n(1− FX (un))c φ(un) −−−→

n→∞
µ(α− ρ), (6)

then the MLE Convergence Theorem holds also unconditionally on N.
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A univariate central limit theorem

Below follows a clt for the absolute error :

Theorem (Di Bernardino, Maume-Deschamps & P.)

Suppose L satisfies SR2. Let n be the sample size, un := f (n) −−−→
n→∞

∞

and zn := f (n) −−−→
n→∞

∞ such that ∀ s ∈ [0, 1] z−s ρ
n

φ(unzs
n)

φ(un) −−−→n→∞
1.

Let N = Nn denote the random number of excesses above un.
Assume moreover (5), (6) and

log (zn)√
n(1− F (un))

−−−→
n→∞

0 ,

zαn (n(1− F (un)))
−1/2 −−−→

n→∞
0 . (7)

Then √
N

log(f (n)) F̂ n(f (n) f (n))

[
F (f (n) f (n))− F̂ ∗(f (n) f (n)

]
d−−−→

n→∞
N (ν, τ2).
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Convergence results in bivariate framework

Let n be the sample size.
We choose thresholds u1 n = f 1(n) (resp. u2 n = f 2(n)) for X (resp. Y )
and sequences z1 n = f1(n) (resp. z2 n = f2(n)) satisfying assumptions of
the univariate clt.
We have

rn
∣∣∣F (f 1(n)f1(n), f 2(n)f2(n))− F̂ ∗(f 1(n)f1(n), f 2(n)f2(n))

∣∣∣ P−−−→
n→∞

0.

Remark : we can replace f 2(n) by f̂ 2(n).

If C is twice continuously differentiable, in case of asymptotic
dependence, we can take ∀ε > 0

rn = min
{
n1/3−ε,

√
NX

log(f1(n)) bFX(f1(n) f 1(n))
,

√
NY

log(f2(n)) bFX(f2(n) f 2(n))

}
.
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Ledford & Tawn’s second order model

Model :

Let (Z1,Z2) a bivariate random vector with Fréchet margins.

P (Z1 > z1,Z2 > z2) = z−c1
1 z−c2

2 L(z1, z2) with c1, c2 > 0 and

L(z1, z2) ∼ g1(z1, z2)(1 + g2(z1, z2)z
ρ1
1 zρ2

2 ) as z1, z2 →∞,

with g1 and g2 homogeneous functions of order 0.

Notation :
η = (c1 + c2)−1,
ρ1 + ρ2 = τ , usually τ < 0.
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Ledford & Tawn’s second order model

Asymptotic dependence if η = 1 and L(t) 9 0.

Asymptotic independence if η < 1 or if η = 1 and L(t)→ 0.
Case exact independence η = 1/2 (in that case we have θ = 1/η = 2).
Case positive association 1/2 < η < 1 or η = 1 and L(t)→ 0.
Case negative association 0 < η < 1/2.

• "Ledfor & Tawn does not work for extreme sets that are not
simultaneously extreme in all components."
• Note that there exist counter-examples to Ledford & Tawn models
(Schlather, 2001).
• They always work with Fréchet margins, by proceding with the
following transformations :
Ẑ1,i = −1/ log F̂X (Xi ), Ẑ2,i = −1/ log F̂Y (Yi ).
What happens then with the rate when coming back to the initial
distributions?

June 23, 2010 ESTIMATING BIVARIATE TAILS



One-dimensional results
In dimension 2

Estimating the tail of bivariate distributions
Comparison with Ledford & Tawn’s model

Simulation Study

Ledford & Tawn’s second order model

Asymptotic dependence if η = 1 and L(t) 9 0.

Asymptotic independence if η < 1 or if η = 1 and L(t)→ 0.
Case exact independence η = 1/2 (in that case we have θ = 1/η = 2).
Case positive association 1/2 < η < 1 or η = 1 and L(t)→ 0.
Case negative association 0 < η < 1/2.

• "Ledfor & Tawn does not work for extreme sets that are not
simultaneously extreme in all components."
• Note that there exist counter-examples to Ledford & Tawn models
(Schlather, 2001).
• They always work with Fréchet margins, by proceding with the
following transformations :
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Model Survival Clayton-Fréchet, asymptotic dependence

C (u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula),

FX (x) = FY (x) = exp (−1/x) (same margins, Fréchet distribution).

Figure: Copula Survival Clayton.
Figure: Bivariate distribution
function FX ,Y (x , y), with FX = FY ,
for x > 0, y > 0.
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We introduce

F̂1
∗
(x , y) = exp{−l̂n(−log(F̂X

∗
(x)),−log(F̂Y

∗
(y)))}, (8)

F̂2
∗
(x , y) = 1− l̂n(1− F̂X

∗
(x), 1− F̂Y

∗
(y)), (9)

with F̂X
∗
(x) (resp. F̂Y

∗
(y)) 1D POT tail estimator for X (resp. Y ).

method ERRabs ERRrel

classical 1 0.009907416 0.01207137
classical 2 0.01203755 0.01466676
L & T 0.02218138 0.02702618
Y & W 0.01566613 0.01908789

Table: t = 100 simulations of size n = 1000, u1 n = u2 n = n1/3/3 = 3.33333,
z1 n = z2 n = log n1/3 = 2.302585
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Model Survival Clayton-Fréchet, asymptotic dependence

method F
“
f1(n)f 1(n), f2(n)f 2(n)

”
empirical variance

theoretic 0.8207367
classical 1 0.8216137 0.0001566896
classical 2 0.8160857 0.0002055914
L & T 0.8143 0.000713136
Y & W 0.8310827 0.0002599203

Table: t = 100 simulations of size n = 1000
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Model Survival Clayton-Burr, asymptotic dependence

C (u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula),

FX (x) = 1− (1 + x)−1, FY (y) = 1− (1 + y)−2 (Burr(1), Burr(2)).

Figure: Copula Survival Clayton.
Figure: Bivariate distribution
function FX ,Y (x , y), with FX = FY ,
for x > 0, y > 0.
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Model Survival Clayton-Burr, asymptotic dependence
method ERRabs ERRrel

classical 1 0.01308886 0.01578057
classical 2 0.01285705 0.000192
L & T 0.01558348 0.01878820
Y & W 0.01685493 0.02128565

Table: t = 100 simulations of size n = 1000, u1 n = n1/3/3 = 3.33333,
z1 n = log n1/3 = 2.302585, u2 n =

√
3.33333, z2 n =

√
2.302585

method F
“
f1(n)f 1(n), f2(n)f 2(n)

”
empirical variance

theoretic 0.8294288
classical 1 0.8375733 0.0001816101
classical 2 0.836 0.000192
L & T 0.8210546 0.0005832912
Y & W 0.8313332 0.0006985493

Table: t = 100 simulations of size n = 1000
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Model Independent-Burr, asymptotic independence

C (u, v) = u v (Independent copula),

FX (x) = 1− (1 + x)−1, FY (y) = 1− (1 + y)−2 (Burr(1), Burr(2)).

Figure: Copula Independent.
Figure: Bivariate distribution
function FX ,Y (x , y), with FX = FY ,
for x > 0, y > 0.
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Model Independent-Burr, asymptotic independence
method ERRabs ERRrel

classical 1 0.01039948 0.01297756
classical 2 0.02041998 0.01987981
L & T 0.00343821 0.004290557
Y & W 0.003974741 0.004960096

Table: t = 100 simulations of size n = 1000

method F
“
f1(n)f 1(n), f2(n)f 2(n)

”
theoretic 0.8013436
classical 1 0.811743
classical 2 0.820857
L & T 0.7979054
Y & W 0.8053183

Table: t = 100 simulations of size n = 1000, u1 n = n1/3/3 = 3.33333,
z1 n = log n1/3 = 2.302585, u2 n =

√
3.33333, z2 n =

√
2.302585

June 23, 2010 ESTIMATING BIVARIATE TAILS



One-dimensional results
In dimension 2

Estimating the tail of bivariate distributions
Comparison with Ledford & Tawn’s model

Simulation Study

Loss-ALAE

Data examined by Frees and Valdez (1998) with
X Pareto (1.122), Y Pareto (2.118), Copula Gumbel with parameter 1.4.

We then get g(x) = 1+x−(1+x1.4)1/1.4

2−21/1.4 .

We choose
u1 n = 10000× n1/3 = 114471.4, z1 n = 1.7471 ⇒
u1 n × z1 n = 200 000.
u2 n = F̂Y (FX (u1 n)), z2 n = 3 ⇒ u2 n × z2 n = 100 000.

We get the estimate

P (Loss ≤ 200 000, ALAE ≤ 100 000) = 0.9513696.

Hence P (Loss > 200 000,ALAE > 100 000) = 0.0067029.
We compare with the empirical probability 0.006 (see Beirlant, Dierckx &
Guillou, 2010).
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Loss-ALAE
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Figure: Loss-ALAE.
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Loss-ALAE

Example : for kn = 840 we get
P (Loss ≤ 200 000,ALAE ≤ 100 000) = 0.9506583, that is an absolute
error equal to 8.436013× 10−6 and a relative error equal to
8.835904× 10−6.
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Figure: Sensibility with respect to 10 ≤ kn ≤ 1500.
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Loss-ALAE
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Figure: Zoom for 10 ≤ kn ≤ 50.
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Figure: Zoom for 500 ≤ kn ≤ 1150.
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Summary

? a new and different approach for estimating bivariate tails,

? we need neither Ledford & Tawn assumptions nor unit Fréchet margins,

? as for L & T estimate, it is particularly interesting when dealing with
asymptotic independence.
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Ideas for future developments

? get the optimal rate, a central limit theorem?

? use the bivariate tail estimator F̂ ∗(x , y) to obtain estimation of
bivariate upper-quantile curves, for high levels α.

? application to the estimation of bivariate Value-at-Risk for large α :

VaRα(F̂ ) := {(x , y) ∈ (f 1(n),+∞)× (f̂ 2(n),+∞) : F̂ ∗(x , y) = α}.
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Thank for your attention!
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