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Random Forests
m introduced by L. Breiman in 2001
m ensemble methods, Dietterich (1999) and (2000)
m popular and very efficient algorithm of statistical learning,

based on model aggregation ideas, for both classification and
regression problems.

We consider a learning set L = {(X1, Y1),...,(Xn, Yn)} made of n
i.i.d. observations of a random vector (X, Y).

Vector X = (X1,..., XP) contains explanatory variables, say
X €RP, and Y € Y where Y is either a class label or a numerical
response.

For classification problems, a classifier t is a mapping t : RP — Y
while for regression problems, we suppose that Y = s(X)+¢ and s
is the so-called regression function.
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CART

CART (Classification And Regression Trees, (Breiman 1984)) can
be viewed as the base rule of a random forest.
Recall that CART design has two main stages:

m maximal tree construction to build the family of models

m pruning for model selection

With CART, we get a classifier or an estimate of the regression
function, which is a piecewise constant function obtained by
partitioning the predictor’s space
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CART

Growing step, stopping rule:

m do not split a pure node

m do not split a node containing less than nodesize data
Pruning step:

m the maximal tree overfits the data

m an optimal tree is pruned subtree of the maximal tree which
realizes a good trade-off between the variance and the bias of
the associated model
Penalized criterion:

. T
crita(T) = Ra(f, i1, L) + a%

~ 1 ~
where Ry(f,fir,Lo) == > (Yi—f7(X;)? and where
" (XDt
| T| is the number of leaves of the tree T
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CART

Denote by
m 1 the marginal distribution of X
m ||| the L?(RP, )-norm
m { is the final estimator given by CART

A typical result (Gey, Nedelec (2005))

There exist Cy, C;, C3 nonnegative constants such that:

7 T, G, |
E [Hf - f|||£1] <G _inf [ inf |ju—f|+ a2u +_2+C3ﬂ
TEjT}mx UEST ny n ny

where St is the set of piecewise constant functions defined on the
partition T
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Bagging

Bagging (Breiman 1996)

Bootstrap aggregating

he(x) = Z hi(x
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Random Forests

CART-RF

We define CART-RF as the variant of CART consisting to select at
random, at each node, mtry variables, and split using only the
selected variables. The maximal tree obtained is not pruned.

mtry is the same for all nodes of all trees in the forest.

Random forest (Breiman 2001)

To obtain a random forest we proceed as in bagging. The
difference is that we now use the CART-RF procedure on each
bootstrap sample.
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Random Forests

OOB = Out Of Bag.

OOB error

Consider a forest. For one data (Xj, Y;), we only keep the
classifiers hy built on a bootstrap sample which does not contain
(Xi, Y;), and we aggregate these classifiers. We then compare the
predicted label we get to the real one Y.

After doing that for each data (X, Y;) of the learning set, the
OOB error is the proportion of misclassified data .

To avoid unsignificant sampling effects, each OOB error is actually
the mean of OOB errors over 10 runs.
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Random Forests

R package:

m seminal contribution of Breiman and Cutler (early update in
2005)

m described in Liaw, Wiener (2002)

Focus on the randomForest procedure whose main parameters
are:

m ntree, the number of trees in the forest;

m mtry, the number of variables randomly selected at each node.
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Data Sets

Name Observations Variables Classes

lonosphere 351 34 2
Diabetes 768 8 2
Sonar 208 60 2
Votes 435 16 2
Ringnorm 200 20 2
Threenorm 200 20 2
Twonorm 200 20 2
Glass 214 9 6
Letters 20000 16 26
Sat-images 6435 36 6
Vehicle 846 18 4
Vowel 990 10 11
Waveform 200 21 3

Table: Standard (n > p) classification problems - data sets
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Data Sets

Name Observations Variables Classes
BostonHousing 506 13
Ozone 366 12
Servo 167 4
Friedman1l 300 10
Friedman2 300 4
Friedman3 300 4

Table: Standard (n>> p) regression problems - data sets
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Data Sets

Name Observations Variables Classes

Adenocarcinoma 76 9868 2
Colon 62 2000 2
Leukemia 38 3051 2
Prostate 102 6033 2
Brain 42 5597 5
Breast 96 4869 3
Lymphoma 62 4026 3
Nci 61 6033 8
Srbct 63 2308 4
toys data 100 100 to 1000 2
PAC 209 467
Friedmanl 100 100 to 1000
Friedman2 100 100 to 1000
Friedman3 100 100 to 1000

Table: High dimensional (n < p) problems - data sets for classification
at the top, and for regression at the bottom
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Regression
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8| i -~ ntree=100| 2 -~ ntree=100|
B T
—500 2

15 1 ---1000 2

OB Error
OOB Error

friedman3

0.033f
00a2f\ '\
0.031]

0.03]
0.029)
0.028]
0.027]
0.026]

Figure: Standard regression real (left) and simulated (right) data sets
Vertical solid line mtry = p/3 (default value), dashed line mtry = \/p

- the OOB error maximal for mtry = 1 then decreases quickly (except for
the ozone data) then as soon as mtry > \/P. the error is stable

- the choice mtry = /p gives often lower OOB error than mtry = p/3,
and the gain can be important. So the default value seems to be often
suboptimal, especially when |p/3]| =1

- ntree = 500 is convenient, but ntree = 100 leads, to comparable results
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Figure: Standard regression real (left) and simulated (right) data sets
So, for standard (n >> p) regression problems, it seems that there is no
improvement by using random forests with respect to unpruned bagging
(obtained for mtry = p)
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Regression

A high dimensional regression simulated data set

m Example built by adding extra noisy variables to the
Friedmanl model defined by:

Y = 10sin(7 X X?) +20(X® — 0.5)2 + 10X* +5X° + ¢
where X1, ..., X® are independent and uniformly distributed
on [0,1] and € ~ N(0,1)

m So we have 5 variables related to the response Y, the others
being noise (independent and uniformly distributed on [0, 1])

m We set n = 100 and let p vary
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Figure: High dimensional regression simulated data set Friedmanl.
x-axis is in log scale, vertical solid line mtry = p/3, dashed line

mtry = /p

- OOB error decreases while mtry increases

- while p increases, both OOB errors of unpruned bagging (mtry = p)
and random forests with default value of mtry increase

- unpruned bagging performs better than RF (gain ~ 25%)

- mtry = /p gives worse results than mtry = p/3

- ntree = 500 is convenient, but ntree = 100 is sufficient
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Figure: High dimensional regression PAC data. The x-axis is in log scale
- vertical solid line mtry = p/3, vertical dashed line mtry = /p

- General behavior is quite similar except for the shape: as soon as

mtry > \/p, the error remains the same instead of still decreasing

- In considered simulated datasets: p the number of true variables is very

small compared to p. Often in real datasets, the proportion P of true
p

variables is larger
- For high dimensional (n << p) regression problems, unpruned bagging
seems to perform better than random forests
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Classification
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Figure: Standard classification real data sets - vertical solid line
mtry = /p

- the default value mtry = /p is convenient

- the default value ntree = 500 is sufficient while a much smaller one
ntree = 100 is not

- the errors for mtry = 1 and for mtry = p (corresponding to the
unpruned bagging) are of the same "large” order of magnitude

- the minimum is reached for the value \/p. The gain ~ 30 or 50%
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Figure: Standard classification: 4 simulated data sets - vertical solid line
mtry = /p

- ntree = 500 is sufficient and, except for the ringnorm already pointed
out as a somewhat special dataset (see Cutler, Zhao (2001)) the value
mtry = /p is a good choice

- the general shape of the error curve is quite different compared to real
datasets: the error increases with mtry. So for these four examples, the
smaller mtry, the better
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Figure: High dimensional classification: 9 real data sets.

- the default value ntree = 500 is sufficient

- general shape: it decreases in general and the minimum value is
obtained or is close to the one reached using mtry = p (unpruned
bagging). The difference with standard problems is notable, why?

When p is large, mtry must be sufficiently large to preserve a high
probability to capture important variables (highly related to the response)
for defining the splits of the RF
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Figure: High dimensional classification: 9 real data sets.

The default value mtry = \/p is still reasonable from the OOB error
viewpoint but of course, since /p is small with respect to p, it is a very
attractive value from a computational perspective (notice that the trees
are not too deep since n is not too large)
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Classification

“Toys data”, Weston et al. (2003)
an interesting equiprobable two-class problem, Y € {—1,1}, with 6
true variables, the others being noise:

m two near independent groups of 3 significant variables (highly,
moderately and weakly correlated with response Y')

m an additional group of noise variables, uncorrelated with Y

Model defined through the conditional distributions of the X' for
Y =y:
m for 70% of data, X'~ yN(i,1) for i=1,2,3 and
X'~ yN(0,1) for i =4,5,6
m for the 30% left, X' ~ yA/(0,1) for i = 1,2,3 and
X' ~yN(i—3,1) fori=4,56
m the other variables are noise, X' ~ N(0,1) for i =7,...,p
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Figure: High dimensional classification simulated data set: toys data for
4 values of p. The x-axis is in log scale - vertical solid line mtry = \/p

- for p =100 and p = 200, the error decreases hugely until mtry reaches
\/P and then remains constant, so the default values work well and
perform as well as unpruned bagging (even if the true dimension
p=6<<p)

- for larger values of p (p > 500), the shape of the curve is close to the
one for high dimensional real data sets

- finally, for high dimensional classification problems, our conclusion is
that it may be worthwhile to choose mtry larger than /p
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Variable Importance
m Definition
m Behavior
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Definition

m The quantification of the variable importance (VI) is an
important issue in many applied problems complementing
variable selection by interpretation issues.

For linear regression case, see various variance decomposition
based indicators in Gromping (2006) and (2007)

m In the RF framework, permutation importance indices are
preferred to total decrease of node impurity measures already
introduced in Breiman et al. (1984)

m Little investigation is available about RF variable importance.
Some interesting remarks in Strobl et al. (2007) and (2008),
Ishwaran (2007), Archer et al. (2008) but they do not answer
crucial questions like:

m the importance of a group of variables
m the behavior of VI in presence of highly correlated variables
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Variable importance

Let j € {1,...,p}. For each classifier hy we consider the
corresponding OOB sample and permute at random the j-th
variable values of these data. Then we compute the OOB error of
hx with these modified OOB data.

The variable importance of the j-th variable is defined as the
increase of OOB error after permutation.

The more the increase of OOB error is, the more important is the
variable

Subsequent VI boxplots are based on 50 runs.
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“Toys data”, Weston et al. (2003)
Interesting equiprobable two-class problem, Y € {—1,1}, with 6
true variables, the others being noise:

m two near independent groups of 3 significant variables (highly,
moderately and weakly correlated with response Y')

m forward reference to the VI plots (left side of next figure)
allows to note that the importance of the variables 1 to 3 is
much higher than the one of variables 4 to 6

m an additional group of noise variables, uncorrelated with Y
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Figure: Variable importance sensitivity to n and p
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Figure: Variable importance sensitivity to n and p: first row (n = 500)

- when p = 6 concentrated boxplots and the order is clear, variables 2
and 6 having nearly the same importance

- when p increases, the order of magnitude of importance decreases

- in addition, VI is more unstable for huge values of p

- What is remarkable is that all noisy variables have a zero VI. So one
can easily recover variables of interest

- the variability of VI is large for true variables with respect to useless ones
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Figure: Variable importance sensitivity to n and p: second row(n = 100)
- greater instability but variable ranking remains quite the same
- in the difficult situations (p = 200,500) importance of some noisy

variables increases

- decreasing behavior of VI with p growing, coming from the fact that
when p = 500 the algorithm randomly choose only 22 variables at each
split (with the mtry default value) and the probability of choosing one of

the 6 true variables is really small

- variability of VI is large for true variables with respect to useless ones
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Figure: Sensitivity to mtry and ntree

- effect of ntree: VI is more than doubled starting from mtry = 14 to
mtry = 100, and it again increases with mtry = 200

- effect of ntree: less visible, but ntree = 2000 leads to better stability

- same order for all true variables in every run of the procedure

- top left: the mean OOB error rate is about 5% and in the bottom right
one it is 3%. The gain in error may not be considered as large, but what
we get in VI is interesting




Behavior

Variable Importance
0000®000

016 & 016
014 014
012 012 b4
° k3
S ol $ 01
£ oo
g 0.08 %
£ 0.06] 0.06 )
ou LT *
*
0020 002=
of — s - = 0 * P
12345678910 12 14 16 12345678910 12 14 16
variable
016 016
014 014
012 012
8
2 o1 01
g
£ o008 008
g ]
£ o00s 006 3
ooar & $$ %§ 004 # 5
o2 e : ol 5F + ‘,
* - * . . P
o T, e P 0 4t T*e L
12345678910 12 14 16 18 20 12345678910 12 14 16 18 20 22 24 26 28 30
variable

Figure: Variable importance of a group of correlated variables

Basic model: previous context with n = 100, p = 200, ntree = 2000 and
mtry = 100

Replications (plotted between the two vertical lines): we simulate 1, 10
and 20 (resp.) variables with a correlation of 0.9 with variable 3 (the
most important one)
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Figure: Variable importance of a group of correlated variables

- the magnitude of importance of the group 1,2, 3 is steadily decreasing
when adding more replications of variable 3. On the other hand, the
importance of the group 4,5, 6 is unchanged

- VI is not divided by the number of replications. Even with 20
replications the maximum importance of the group containing variable 3
is only three times lower than the initial importance of variable 3

- even if some variables in this group have small importance, they cannot
be confused with noise
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Figure: VI of two groups of correlated variables - replications are plotted
between the two vertical lines, V3 replicates then V6 ones

- the magnitude of importance of each group (1,2,3 and 4,5,6
respectively) is steadily decreasing when adding more replications

- the relative importance between the two groups is preserved. And the
relative importance between the two groups of replications is of the same
order than the one between the two initial groups
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Two objectives

m Variable selection usually based on the cooperation of variable
importance for ranking and model estimation to evaluate and
compare a family of models

m Three types of methods (Kohavi et al. (1997)):

m "filter”: VI score does not depend on model design method;

m "wrapper”: prediction performance included in VI score

m "embedded” relates closely variable selection and model
estimation

m Nonparametric methods for classification:

- CART Breiman et al. (1984), RF Breiman (2001)

- Embedded methods: Poggi, Tuleau (2006), SVM-RFE
Guyon et al. (2002), Rakotomamonjy (2003), Ben Ishak,
Ghattas (2008) for a stepwise variant, Park et al. (2007)
"LARS" type strategy

m Mention mixed strategy for the case n << p: descending first
to reach a classical situation n ~ p, and then ascending, see
Fan, Lv (2008)



Variable Selection
oeo

D
Two objectives

We distinguish two different objectives:

to magnify all the important variables, even with high
redundancy, for interpretation purpose

to find a sufficient parsimonious set of important variables for
prediction

Two earlier works must be cited:
m Diaz-Uriarte, Alvarez de Andrés (2006)
m Ben Ishak, Ghattas (2008)
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Two objectives

m Diaz-Uriarte, Alvarez de Andrés (2006): a strategy based on
recursive elimination of variables

m compute RF VI

m at each step, eliminate the 20% of the variables having the
smallest importance and build a new forest

m finally select the set of variables leading to the smallest OOB
error rate

m Drawback: the proportion of variables to eliminate is arbitrary
and does not depend on the data

m Ben Ishak, Ghattas (2008): ascendant strategy based on a
sequential introduction of variables

m compute some SVM-based VI

m build a sequence of SVM models invoking at the beginning the
k most important variables, by step of 1 (for too large k,
additional variables are invoked by packet

m select the set of variables leading to the model of smallest
error rate
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Procedure

Preliminary elimination and ranking:
m Compute the RF scores of importance, cancel the variables of
small importance
m Order the m remaining variables in decreasing order of
importance

Variable selection:
m For interpretation:

m Construct the nested collection of RF models involving the k
first variables, for k =1 to m

m Select the variables involved in the model leading to the
smallest OOB error

m For prediction (conservative version):

m Starting from the ordered variables retained for interpretation,
construct an ascending sequence of RF models, by invoking
and testing the variables stepwise

B The variables of the last model are selected
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Figure: Variable selection procedure for interpretation and prediction:
toys data n = 100, p = 200

- True variables (1 to 6) represented by (1>, A, 0, %, <1,00)

- VI based on 50 forests with ntree = 2000, mtry = 100
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Figure: Variable selection procedure: Ranking

Ranking by sorting the VI in descending order

- Graph for the 50 most important variables (the other noisy variables
having an importance very close to zero too)

- True variables are significantly more important than the noisy ones
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Figure: Variable selection procedure: Elimination

Consider corresponding standard deviations of VI to estimate a threshold
and keep variables of importance exceeding this level

- Threshold = argmin of the prediction value given by a CART model
fitting this curve (conservative in general)

- True variables standard deviation large w.r.t. the noisy variables one,
which is close to zero

- The selected threshold leads to retain 33 variables
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Procedure
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Figure: Variable selection procedure for interpretation

Compute OOB error rates of RF for the nested models and select the
variables of the model leading to the smallest OOB error

- Error decreases quickly and reaches its minimum when the first 4 true
variables are included in the model, then it remains almost constant

- The model containing 4 of the 6 true variables is selected. In fact, the
actual minimum is reached for 24 variables but we use a rule similar to
the 1 SE rule of Breiman et al. (1984) used for cost-complexity selection
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Sequential variable introduction with testing

- A variable is added only if the error gain exceeds a threshold since the
error decrease must be significantly greater than the average variation
obtained by adding noisy variables

- Final prediction model involves only variables 3, 6 and 5
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Figure: Variable selection procedures for Prostate data, ntree = 2000,
mtry = p/3

- same picture as previously, except for the OOB rate along the nested
models which is less regular

- Key point: it selects 9 variables for interpretation, and 6 variables for
prediction (both very much smaller than p = 6033)
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Dataset | interpretation | prediction | original
Colon 0.16 (35) | 0.20(8) | 0.14
Leukemia 0 (1) 0(1) | 0.02
Lymphoma 0.08 (77) 0.09 (12) | o0.10
Prostate 0.085 (33) | 0.075(8) | 0.07

Table: Variable selection for four high dimensional real datasets.
CV-error rate calculated using the same partition in 5 parts and with
ntree = 2000 and mtry = p/3. Into brackets, average number of selected
variables

- Number of interpretation variables is hugely smaller than p: at most
tens to be compared to thousands

- Number of prediction variables is very small (always smaller than 12)
and the additional reduction can be very important

- Errors for the two variable selection procedures are of the same order of
magnitude as the original error (but a little bit larger)

- Error rates are comparable with the results reported by Ben Ishak,
Ghattas (2008) which have compared their method with 5 competitors
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Figure: Variable selection procedures for Friedmanl data, n = 100 with
p = 200 variables. True variables of the model (1 to 5) are respectively
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Figure: Friedmanl data
- Interpretation procedure selects the true variables except variable 3 and
two noisy variables, and the prediction set of variables contains only the
true variables (except variable 3 hardly correlated with the response

variable)

R
nested models

S
predictive models

- The whole procedure is stable across several runs
- In addition, the test mean squared error with all variables is about 19.2,
with the 6 interpretation variables 12.6 and the one with the 4 prediction

variables 9.8
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Figure: Variable importance for Ozone data using mtry = p/3 = 4 and
ntree = 2000.

n = 366 observations of the daily maximum one-hour-average ozone
together with p = 12 meteorologic explanatory variables

From the left to the right. 1-Month, 2-Day of month, 3-Day of week,
5-Pressure height, 6-Wind speed, 7-Humidity, 8-Temperature (Sandburg),
9-Temperature (El Monte), 10-Inversion base height, 11-Pressure
gradient, 12-Inversion base temperature, 13-Visibility
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Figure: Three groups of variables for Ozone data.

1- Best ozone predictors: the two temperatures (8 and 9), the inversion
base temperature (12) and the month (1)

2- pressure height (5), humidity (7), inversion base height (10), pressure
gradient (11) and visibility(13)

3- day of month (2), day of week (3) of course and more surprisingly
wind speed (6): wind enter in the model only when ozone pollution

arises(see Cheze et al. (2003))
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