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Presentation outline

® Problem and challenges

® Related work and motivation of our work

® Query expansion implemented in two approaches

» generative mixture model
» linear discriminant model

® Conclusion
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Using captions as weak supervision to find people

German Chancellor Angela Merkel Kate Hudson and Naomi Watts,
shakes hands with Chinese President Le Divorce, Venice Film Festival -
Hu Jintao (...) 8/31/2003.

® Task: Find all face images of a particular person

» Manual construction of labeled training sets costly
» Continued labeling effort needed for online system with new people arriving

e Using caption alone does not work: only 44% of faces are correct
» Averaged over our set of 23 people with ground truth annotation

® Better approach: combine information in caption with visual analysis
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Challenges in the data

® Appearance variations: illumination, expression, pose, scale, occlusion, ...




Challenges in the data

® Appearance variations: illumination, expression, pose, scale, occlusion, ...
® Naming variations: Bush, George W. Bush, US president, . ..

® Imperfect detectors: both for names & faces




Work on related problems

® Matching all names and faces
in captioned news images: many
possible matches (Berg et al. CVPR '04)

Lloyd Bentsen is pictured here announcing his retirement in 1994 at the White House
with former US President Bill Clinton, Chief of Staff Leon Panetta, Robert Rubin
and Judy Rubin (...)

® Naming characters in TV series
combining tracking and video-script
alignment (Everingham et al. BMVC '06)

¢ Labeling personal photo collections
exploiting social networks, e.g. FaceBook
to predict co-occrence (Stone et al. CVPR '08)
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Previous work on our problem: find all instances of X

® Approach in previous work on same problem:
(Ozkan & Duygulu CVPR’'06), (Guillaumin, Mensink, Verbeek & Schmid CVPR’08)

» Given query name X
» Select all images with X in caption
» Analyze faces in those images to rank or classify them

® Underlying principles:
» Text filtering makes queried person the most frequent

» Task is reduced to finding the big mode among clutter

® Failure case:

» If text-filtering yields a precision < 40%
» Mode finding might return wrong person
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Improving people search using query expansions

® Motivation: avoid confusion with co-occurring people

® Query Expansion: use more images than just those with X in caption

» Find names co-occuring with the queried person: “friends”
» Query database for images with friends in caption, but not X
» Adds “negative” examples, different from typical query expansion in retrieval

® Example: search for “Bush”, expand with “Powell”, “"Rumsfeld”, and “Rice”
..... . ¢ . . ° '
[ e O ([ \ O

Initial situation (left), models based on queries for friends (middle), simplified person identification (right).
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<-- 1 2 3 4 5 6 T -->
Show All
Show Friends | Hide Friends | Show Console output | Hide Console

Friend 1 bush
Friend 2 schroeder
Friend 3 saddam hussein

Friend 4 tony blair




Data and pre-processing pipeline

® Data set: 15.000 captioned images from Yahoo! News (Collected by Tamara Berg)
» Hand labeling of all faces in images with one of the 23 query names in caption

® Name detection: off-the-shelf detector (Deschacht & Moens, WOLP'06)
® Face detection: off-the-shelf detector (Mikolajczyk, Schmid & Zisserman, ECCV'04)

®* Face representation: based on local features

» Detector of facial features: mouth, nose, eyes, ...
supervised training (Everingham et al. BMVC '06)
» Concatenate SIFT descriptors of all facial feature
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Presentation outline

® Problem and challenges

® Related work and motivation of our work

® Query expansion implemented in two approaches

» generative mixture model
» linear discriminant model

® Conclusion
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Approach 1: Gaussian mixture model

® Goal: which, if any, of the F faces in this image is X?
» Coded in assignment variable v € {0,1,..., F}

® Mixture model over set of feature vectors F
» Data not i.i.d. !
» A-priori over ~v: equal for v #0
» Gaussian density for faces of X
» generic “background model” for other faces
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Approach 1: Gaussian mixture model

® Goal: which, if any, of the F faces in this image is X?
» Coded in assignment variable v € {0,1,..., F}

® Mixture model over set of feature vectors F
» Data not i.i.d. !
» A-priori over ~v: equal for v #0
» Gaussian density for faces of X
» generic “background model” for other faces

p(F)=> p(MNp(Fl),  p(Flv) = _Hp(ffh),
BG (i) = N(fiippg ,Xpg ) vy #i
pliil) = {ZF?} (fi) = N(ﬁZFg 7ZF§) ifz =1

® EM algorithm to find face model and assignments

» Background model fixed, only foreground Gaussian and prior updated
» After convergence evaluate p(v|F)




Query expansion in the Gaussian mixture model

® Learn a Gaussian for each friend using standard 2-component model

® Use images with friend in the caption but without X
» At most 15 friends, at least 5 images per friend

® Define new background model: mixture of N friends + generic model

N

pec (f) = —ZN(fiMn,Zn)

n=0
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Query expansion in the Gaussian mixture model

Learn a Gaussian for each friend using standard 2-component model

Use images with friend in the caption but without X
» At most 15 friends, at least 5 images per friend

Define new background model: mixture of N friends + generic model

pec (f) = —ZN(fiMn,Zn)

n=0

Run EM on standard 2-component model using mixture background

Possibly errors in friend models, but trained on images without X
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Results using Gaussian mixture model

7 16 29 30 39 39 40 42 44 45 45 46 47 50 51 51 52 53 53 54 55 55 55
Percentage of faces representing queried person

Comparing mixture model without (green), and with (yellow) query expansion

® Failure case of previous work: low text-based precision (<40%)

® Progress mainly in those cases: 20%-50% increase in precision
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Results using Gaussian mixture model (2)

® Green: 1 background Gaussian: fitted to all faces with X in caption

Red: 1 background Gaussian: fitted to all faces in expansion

Blue: Mixture background: composed of Gaussian for friends + expansion
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Approach 2: logistic discriminant model

® Motivation: diagonal Gaussian model rather limited
» Too little data to allow learning of richer model

® Logistic discriminant: same nr. of parameters put to use for separation

» Laplace prior for sparsity in the weight vector

ply = 1/f) =

1
1+ exp(w'f)
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Approach 2: logistic discriminant model

® Motivation: diagonal Gaussian model rather limited
» Too little data to allow learning of richer model

® Logistic discriminant: same nr. of parameters put to use for separation
» Laplace prior for sparsity in the weight vector

1
ply ) 1+ exp(w'f)

® Positive examples: all faces in images with X in caption

®* Negative examples:

» random set of faces without X in caption
» faces in query expansion
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lterative re-labeling of noisy positive data

® Positive data is very noisy
» on average only 44% correct

® People appear once per image
» most of the time

® |terative re-labeling of noisy positive examples

» Learn initial classifier from all faces after text search
» Re-label most suspicious faces as negative

» Re-train classifier using new labels

» Repeat until one face per positive image is left
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Results logistic discriminant model

® Green: Discriminate noisy positives from a set of random faces
® Red: lteratively re-labeling of noisy positive set

® Blue: Idem, but use query expansion as negative example set
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Comparison of results with state-of-the-art

® Red: Discriminative model, re-labeling, query expansion (this paper)
® Blue: Gaussian mixture, query expansion (this paper)
® Green: Similarity-based method (our CVPR '08)

® Black: Similarity-based method (Ozkan & Duygulu, CVPR '06)
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® More than 10% increase in precision for recall levels up to 90%
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Performance in absence of captions

® (lassifiers learned from caption based supervision

® Test on “Labeled Faces in the Wild" data set
» public data set, 13.000 hand labeled faces, no captions
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Conclusions

® Query expansion improves people search

» Generative model benefits most from expansion
» Discriminative model yields best performance

¢ Significant progress when text-based precision is low

» These remain the most difficult cases

® Our methods using query expansion improves earlier work

» +10% precision compared to our CVPR'08 work
» +20% precision compared to Ozkan & Duygulu CVPR'06
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