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Introduction
General setting

Sequence Xn of r.v.

(Ω, T ,P)! (X ,A), same law P = PX1

independent or stationary mixing (β, ρ or φ)
Ω rich enough to allow our Gaussian coupling

Class F of bounded functions f : X ! R

mean and variance

Pf =
Z
X
fdP,

Z
X
(f � Pf )2dP < ∞

sup-norm
kGkF = sup

f 2F
jG(f )j
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Introduction
Emprical process indexed by functions

Based on X1, ...,Xn

empirical measure

Pn =
1
n

n

∑
i=1

δXi

empirical means

Pnf =
Z
X
fdPn =

1
n

n

∑
i=1
f (Xi )

the (P,F)-empirical process

αn(f ) =
p
n(Pnf � Pf ) =

1p
n

n

∑
i=1
ff (Xi )� Pf g

Note that αn is a sum of L∞(F )-valued r.v.�s
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Introduction
Time and space

Space but no time involved in

f 2 F ! αn(f ) =
p
n(Pnf � Pf )

Time but no space involved in (only one f ),

t 2 [0, 1]! Sn(t) =
1p
n

[nt ]

∑
i=1
(f (Xi )� Pf )

Possible to mix methods to study the sequential

αn(t, f ) =
p
n(P[nt ]f � Pf ) =

1p
n

[nt ]

∑
i=1
(f (Xi )�E (f (X )))

(nothing to do with F =
n
ft = I(�∞,t ]

o
in αn on R).
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Introduction
Weighted, hybrid, composed, 2-sample processes

More generally,

αn(t, f , ϕ) =
1p
n

n

∑
i=1
ci ,n(t)ϕ(Xi ,Yi )f (Xi ).

for deterministic weights ci ,n(t) and functions ϕj acting as
random weights (or contrasts) based on a single sample (Xi ,Yi ).
If countable ϕ this is to study the joint behavior.

Likewise U-processes versions, by crossing indexes of two
samples (Xi ) and (Yi ),

αn(s, t, f ) =
1p
n

[sn]

∑
i=1

[tn]

∑
j=1
ci ,j ,nf (Xi ,Yj ).

Typical limiting processes G are combinations of Brownian
Motions and Brownian Bridges indexed by functions 6= F .
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Introduction
Goal : Brownian paradigm

Provide tractable Brownian coupling

- (n! ∞) to derive functional CLT for αn and CLT for Ψn(αn)
- (�xed n) to plugin a limiting or intermediate Gaussian process
- �xed n is sometimes a shorter way to handle n! ∞

To study a statistic Tn(X1, ...,Xn) = Ψn(Pn)

approximate αn with a version Gn of its limit G OR close to G

Ψn

�
P +

Gnp
n
+

αn �Gnp
n

�
� Ψ∞(P)+φn

�
Gnp
n

�
+ oa.s .

�
vnp
n

�
easy proof of weak convergence, exploit Gaussianity at �nite n
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Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F

mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle

F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle

F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle

F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle

F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle
F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle
F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )

uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, independent case

Let G be a P-Brownian Bridge indexed by F
mean zero Gaussian process, covariance

cov(G(f ),G(g)) = cov(αn(f ), αn(g)) = Pfg � Pf Pg

G is uniformly continuous on F with respect to

dP (f , g) = kf � gkL2(P )

Weak invariance principle
F is P-Donsker if

αn ! G weakly in L∞(F )

well known su¢ cient conditions on (P,F )
uniform CLT, a few rates (only one is optimal)

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 7 / 45



Introduction
Weak invariance, dependent case

Dependent stationnary X = fXng with small mixing coe¢ cients
(β, ρ or φ) has a weak limit, the (P,X)-Brownian Bridge G∞
with covariance

Γ∞(f , g) =E(f (X )g(X ))�E(f (X ))E(g(X ))

+
∞

∑
i=2
(E (f (Xi )g(X1))�E(f (X ))E(g(X )))

+
∞

∑
i=2
(E (f (X1)g(Xi ))�E(f (X ))E(g(X ))) .

It is not easy to learn accurately the dependence structure of X

from X1, ...,Xn so to learn G∞.
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Introduction
Strong invariance principle, independent case

Last 50 years, on X = R a lot of work to strengthen Donsker

Skorokhod embedding (allows up to n�1/4+ε rates for sums)
Csörg½o-Révész construction
Komlós-Major-Tusnády "Hungarian construction"
re�nements

The strong invariance principle

on (Ω, T ,P) construct fXng and dependent copies Gn of G

kαn �GnkF = O(vn) a.s.

implies the weak invariance principle
if su¢ cient probabilities, Lévy-Prohorov distance
dL(αn,Gn) = O(vn)
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Introduction
Strong invariance principle, independent case

The strong approximation

on (Ω, T ,P) construct fXng and independent copies G�
i of G

max
1�m�n






pm αm �
m

∑
i=1

G�
i







F
= O(Vn) a.s.

implies

kαn �GnkF = O
�
Vnp
n

�
a.s.

with a version Gn of G having a Kiefer-type structure

Gn =
1p
n

n

∑
i=1

G�
i

slower Vn/
p
n� vn ! 0 versus useful independence of G�

i
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Introduction
Gaussian coupling, independent case

Invariance/strong approximation are implied by a Brownian
coupling

for deterministic cθ = cθ(F ,P) > 0
for deterministic vn = vn(F ,P)! 0
for any θ > 0, n � 1 on Ω we can construct versions of
X1, ...,Xn and G such that

P (kαn �GkF > cθvn) �
1
nθ
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Introduction
Problem in the dependent case

Limiting process G∞ hard to couple with X1, ...,Xn and makes
few sense at �nite n

Covariances Γn (of αn) ! Γ∞ (of G∞) where

Γn(f , g) = E(f (X )g(X ))�E(f (X ))E(g(X ))

+
n

∑
i=2

n� i + 1
n

(E (f (Xi )g(X1))�E(f (X ))E(g(X )))

+
n

∑
i=2

n� i + 1
n

(E (f (X1)g(Xi ))�E(f (X ))E(g(X ))) , f , g 2 F .

Find an intermediate Gaussian process G�
n with covariance close

to Γn and Γ∞ such that

for cθ, vn ! 0, any θ > 0, all n � 1 on Ω construct αn and G�
n

P (kαn �G�
nkF > cθvn) �

1
nθ
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Introduction
Gaussian coupling, dependent case

Find an intermediate Gaussian process G�
n with covariance Γ�n

close to Γn and Γ∞ such that

for deterministic cθ and vn ! 0
for any θ > 0, n � 1 on Ω construct X1, ...,Xn and version G�

n

P (kαn �G�
nkF > cθvn) �

1
nθ

Try to keep the covariance bias small,

max

 
sup
f ,g2F

jΓ�n � Γnj (f , g), sup
f ,g2F

jΓ�n � Γ∞j (f , g)
!
< bn

Independent case only : Γ�n = Γn = Γ∞.

Otherwise, trade o¤ between vn, n�θ, bn.
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Applications
Empirical Risk Minimization

Application 1. Helps in studying the estimation of

f� = argminF
Pf

by means of

fn = argminF
Pnf = argminF

�
Pf +

Gp
n
f +

αn �Gp
n
f
�

Contrasts F = ff (�, g) : g 2 Gg, risk Pf

classi�cation : X = (Y ,Z ), risk Pf = P (g(Y ) 6= Z )
regression : X = (Y ,Z ), risk Pf = E (g(Y )� Z )2
likelihood : X has density gθ, risk Pf = �E (log gθ(X ))
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Applications
Empirical Risk Minimization

Application 1 (continued). The excess risk is

P(fn � f�) = Pn(fn � f�)�
Gp
n
(fn � f�) + errors

allows to �nd excess risk limiting distribution
alternative approach of model selection
helps understanding optimal penalties (to compete increments
of G/

p
n)
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Applications
Stability of Almost Risk Minimizers

Application 2. Given ξn < 1/
p
n and consider the almost

minimizers

Fn = ff 2 F : Pnf < Pnfn + ξng

Under entropy and/or margin conditions Berthet-Saumard
studied

P
�
diamL2Fn > d+n

�
< n�θ

P
�
diamL2Fn < d�n

�
< n�θ

P

 
d�n < sup

f ,g2Fn
jPf � Pg j > d+n

!
< n�θ

The Gaussian coupling starts the proof but covariance is needed
later.
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Applications
k-sample U-processes

Application 3a. For f 2 F �nd the limiting process of

1
n1...nk

∑
16i16n1

... ∑
16ik6nk

f (X (1)i1
, ...,X (k)ik

)�E(f (X (1)1 , ...,X (k)1 ))

at rate
p
minj�k nj in Berthet-Paroux current work

gives �nite nj approximations by the limiting or intermediate
Gaussian process
limiting processes indexed by classes of conditional
expectations of f 2 F

Application 3b. Likewise for hybrid or randomly weighted
empirical processes, convergence to a sum of Brownian motions
and Bridges indexed by conditional expectations.
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Applications
CLT for Level Sets Estimators

Application 4. Sets C in Rd , sample X1, ...,Xn density f

target a λ-level set C� = ff > λg
C� = argmax

C2C
fP(C )� λµ(C )g

= argmax
C2C

fP(C ) : µ(C ) � vλg

= arg min
C2C

fµ(C ) : P(C ) � pλg

Berthet-Einmahl are studying the joint limiting shapes of
Ck ,n∆C�

C1,n = argmax
C2C

fPn(C )� λµ(C )g

C2,n = argmax
C2C

fPn(C ) : µ(C ) � vλg

C3,n = arg min
C2C

fµ(C ) : Pn(C ) � pλg
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Applications
Learning theory

Application 5a. Robust algorithms for learning theory in
adversarial environment (bandits, exploit or explore
compromise). Decisions are randomized but depend from the
past whereas regret involves also the close unknown futur.

Application 5b. Control of bias, risk and regret (when a cost is
involved) when using model selection among random small
dimension sub�elds to estimate regression.
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Couplings
KMT, optimal rate

Let P = U(0, 1), F =
n

I[0,t ] : 0 < t < 1
o
, vn =

log np
n

By KMT on Ω there exists fXng and Brownian Bridges fGng

P
�p
n kαn �GnkF � c1λ+ log n

�
� c2 exp (�c3λ)

P (kαn �GnkF � cθvn) � 1
nθ

Indeed

for some fXn,Gng lim sup
n!∞

p
n

log n
kαn �GnkF � 12 a.s.

for any fXn,Gng lim inf
n!∞

p
n

log n
kαn �GnkF � 1

6
a.s.
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Couplings
Tools

Two approaches

i) F only controled by entropy and P = PX free
entropy (uniform, bracketing, random) : if large then more
mixing asked
ii) better speci�ed geometry of F with respect to P
new Donsker classes (F built to control the rate by P) : more
tricky under mixing

Tools : Gaussian coupling in Rd , moment inequalities,
concentration inequalities, symetrization, Dudley-Philipp�s strong
embedding, blocking to apply Berbee lemma.
Simple technique : relies on previous tools from Dudley,
Philipp, Berkes, Kuelbs, Dehling, Pollard, Giné, Talagrand,
Zaitsev, Massart, Koltchinskii, Rio, Einmahl, Mason, among
many others (independent case) and the authors in dependent
data...
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Uniform entropy
Independent case

By Dudley-Philipp if F is P-Donsker then

vn = o(
p
log log n)

This is the case if

F is pointwise measurable, with envelope F 2 L2(P)
for any probability measure P

N
�

ε
p
PF 2,F , dP

�
� φ(ε), 0 < ε < 1

φ is increasing, φ(ε)! ∞ as ε ! 0 andZ
[0,1]

p
log φ < ∞
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Uniform entropy
Independence case

Introduce

Jφ(ε) =
Z ε

0

p
log φ, Ψφ(ε) =

ε

φ5/2(ε)

so that Jφ �Ψ�1φ (ε)� ε as ε ! 0

Theorem U1. We can construct fXng and versions fGng of G

on Ω such that

kαn �GnkF = Oa.s .

 
Jφ �Ψ�1φ

 r
log n
n

!!

This is uniform in P for a �xed F
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Uniform entropy
Polynomialy decreasing, independent case

Assume

F is pointwise measurable, uniformly bounded
for ν > 0 and any probability measure P

N
�

ε
p
PF 2,F , dP

�
� 1

εν
, 0 < ε < 1

if F = fIC : C 2 Cg, C VC-class then ν = VC � 1
Corollary. We can construct fXng and fGng on Ω such that

P

�
kαn �GkF > cθ

(log n)τ0

nτ

�
� 1
nθ

where
τ =

1
2+ 5ν

, τ0 =
4+ 5ν

4+ 10ν
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Uniform entropy
Polynomialy decreasing, independent case

Assume

F is pointwise measurable, uniformly bounded
for ν0 > 0 and any probability measure P

N
�

ε
p
PF 2,F , dP

�
� 1

εν
, 0 < ε < 1

Corollary. We can construct fXng and i.i.d. fG�
ng on Ω

1p
n

max
1�m�n






pm αm �
m

∑
i=1

G�
i







F
= Oa.s .

�
(log n)τ0

nτ(α)

�

τ(α) =
ατ � 1/2
1+ α

< τ =
1

2+ 5ν0
, α 2

�
1
2τ
,
1
τ

�
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Uniform entropy, dependent case
Polynomialy decreasing, exponentialy mixing

Assume
φk < exp(�θk), k 2 N

Theorem U2. We can construct fXng and fG�
ng on Ω,

P (kαn �G�
nkF > cθvn) �

1
nθ

with rate
vn = Cλn

� 1
6+5v (log n)

12+5v
12+10v

and covariance bias

bn = C0n�
2

6+5v (log n)
6

6+5v , C0 > 0.

Even very strong mixing do not interpolate with independence,

n�
1

6+5v � n�
1

2+5v
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Uniform entropy, dependent case
Polynomialy decreasing, polynomialy mixing

Assume (γ > 1)
φk < k

�γ, k 2 N

Theorem U3. We can construct fXng and fG�
ng on Ω,

P (kαn �G�
nkF > cθvn) � n1�(1+γ)w

with rate
vn = Cλn

� 1�2w
6+5v (log n)

12+5v
12+10v

and covariance bias

bn = n�
2�4w
6+5v (log n)

6
6+5v

where
w =

2
17v2 + 17v + 10

whence a strong invariance principle if γ > 17v2 + 17v + 9.
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� 1�2w
6+5v (log n)

12+5v
12+10v

and covariance bias

bn = n�
2�4w
6+5v (log n)

6
6+5v

where
w =

2
17v2 + 17v + 10

whence a strong invariance principle if γ > 17v2 + 17v + 9.
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Uniform entropy
Class of cubes, any P

Exemple. Cubes F =
n

I[s ,t ] : s, t 2 X = [0, 1]d
o

approximated by quadrants, VC-index 2d + 1
by Theorem U1

kαn �GnkF = Oa.s .
�
(log n)...

n1/(7+10d )

�
by Theorem U2

kαn �G�
nkF = Oa.s .

�
(log n)...

n1/(11+10d )

�
distribution free, but not dimension free, �rst of the kind
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Uniform entropy
Class of spheres, any P

Exemple. Spheres F = fIC : C 2 Sdg in X = [0, 1]d

VC-index d + 2
by Theorem U1, for any P

kαn �GnkF = Oa.s .
�
(log n)...

n1/(12+10d )

�
by Theorem U2, for any P

kαn �G�
nkF = Oa.s .

�
(log n)...

n1/(16+10d )

�
distribution free, far from best possible rate n�1/2d (Beck 85)
far from (log n)3/2n�1/2d for uniform P (Massart 89)
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Uniform Entropy
Weighted sup-norm

Exemple. Consider a weight ω on X = [0, 1]d

infX ω = 0,
Z
X

ω�2 dP < ∞

let Xn " X : 1� infXn ω �
p
(log n)/n

Fω,n =
n

I[0,x ]/ω(x) : x 2 Xn
o
(VC index d + 2)

write α0n(t) = αn(I[0,t ]), by Theorem U1, for any P





α0n �G0
n

ω






Xn
= kαn �GnkFω,n

= Oa.s .

 �
(log n)7+5d

n infXn ω2

�1/(12+10d )!

general and tractable statement relating P to ω
By Theorem U2, power becomes 1/(16+ 10d)
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Uniform Entropy
Weighted sup-norm

Exemple (continued). In contrast, if d = 1 and P has
continuous d.f. F

best known weighted approximation (Csörg½o-Horváth 93)



α0n �G0
n

ωα






Xn
= OP

�
1

n1/2�α

�
restricted to iid case and intrinsic "weight and set"

ωα = F α(1� F )α, Xn =
h
F�1(

c
n
),F�1(1� c

n
)
i
, c > 0

for this weight, but also for more P, Theorem U1 yields



α0n �G0
n

ωα






Xn
= OP

�
(log n)6/11

n(1/2�α)/11

�

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 31 / 45



Uniform Entropy
Weighted sup-norm

Exemple (continued). In contrast, if d = 1 and P has
continuous d.f. F

best known weighted approximation (Csörg½o-Horváth 93)



α0n �G0
n

ωα






Xn
= OP

�
1

n1/2�α

�

restricted to iid case and intrinsic "weight and set"

ωα = F α(1� F )α, Xn =
h
F�1(

c
n
),F�1(1� c

n
)
i
, c > 0

for this weight, but also for more P, Theorem U1 yields



α0n �G0
n

ωα






Xn
= OP

�
(log n)6/11

n(1/2�α)/11

�

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 31 / 45



Uniform Entropy
Weighted sup-norm

Exemple (continued). In contrast, if d = 1 and P has
continuous d.f. F

best known weighted approximation (Csörg½o-Horváth 93)



α0n �G0
n

ωα






Xn
= OP

�
1

n1/2�α

�
restricted to iid case and intrinsic "weight and set"

ωα = F α(1� F )α, Xn =
h
F�1(

c
n
),F�1(1� c

n
)
i
, c > 0

for this weight, but also for more P, Theorem U1 yields



α0n �G0
n

ωα






Xn
= OP

�
(log n)6/11

n(1/2�α)/11

�

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 31 / 45



Uniform Entropy
Weighted sup-norm

Exemple (continued). In contrast, if d = 1 and P has
continuous d.f. F

best known weighted approximation (Csörg½o-Horváth 93)



α0n �G0
n

ωα






Xn
= OP

�
1

n1/2�α

�
restricted to iid case and intrinsic "weight and set"

ωα = F α(1� F )α, Xn =
h
F�1(

c
n
),F�1(1� c

n
)
i
, c > 0

for this weight, but also for more P, Theorem U1 yields



α0n �G0
n

ωα






Xn
= OP

�
(log n)6/11

n(1/2�α)/11

�

Philippe BERTHET (Toulouse, France) () Strong Invariance Principles Peligrad conf., June 23, 2010 31 / 45



Uniform Entropy
Squetch of proof

Algebra of proof for uniform entropy

large blocks, size p, separated by small blocks, size q
apply Berbee lemma, making blocs independent
build concentration inequality also using Berbee (Talagrand,
moment inequalities)
neglect small bloks, covariance inequalities
sum the dependent r.v. inside large blocks (p-dim law P 0)
L2(P 0) entropy of F controled by initial entropy
take a covering of F , form indep. vectors (1 per block)
apply Zaitzev coupling in �nite dimension
rebuild processes from coupled pointwise values
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Bracketing Entropy
General rate, independent case

Previous results are uniform in P : what about P �xed ?

F is pointwise measurable, with envelope F 2 L2(P)
increasing ϕ(ε)! ∞,

p
ϕ integrable, F is P-Donsker if

logN[ ](ε,F , dP ) � ϕ(ε), 0 < ε < 1

J[ϕ](ε) =
Z ε

0

p
ϕ, Ψ[ϕ](ε) = ε exp

�
�5
2

ϕ(ε)

�
again Fn = ff 2 F : kf kX < Mng

Theorem B1. If Mn
p
(log n)/n! 0 we can construct fXng

and fGng on Ω such that

kαn �GnkFn = Oa.s .

 
J[ϕ] �Ψ�1

[ϕ]

 
Mn

r
log n
n

!!
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Bracketing entropy
Polynomialy log-entropy

Assume

F is pointwise measurable, uniformly bounded
N[ ] brackets ff 2 F : l � f � ug, dP (l , u) < ε,

logN[ ] (ε,F , dP ) �
1

ε2r0
, r0 < 1.

Corollary. For any θ > 0, all n we can construct (αn,G)

P

�
kαn �GkF >

cθ

(log n)r

�
� 1
nθ

where
r =

1� r0
2r0
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Bracketing entropy, dependent case
Polynomialy log-entropy, exponentialy mixing

Assume (r0 < 1)

logN[ ] (ε,F , dP ) �
1

ε2r0
and φk < exp(�γk)

Theorem B2. We can construct fXng and fG�
ng on Ω,

P (kαn �G�
nkF > cθvn) �

1
nθ

with rate
vn =

1
(log n)r

, r =
1� r0
2r0

.

and covariance bias

bn =
1

(log n)1/r0
.

To interpolate with independence, heavy covariance cost.
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Bracketing entropy, dependent case
Polynomialy log-entropy, polymialy mixing

Assume (r0 < 1 < γ)

logN[ ] (ε,F , dP ) �
1

ε2r0
and φk < k

�γ

Theorem B3. We can construct fXng and fG�
ng on Ω,

P (kαn �G�
nkF > cvn) � n

1� 1+γ
2+r0

with rate
vn =

1
(log n)r

, r =
1� r0
2r0

and covariance bias

bn =
1

(log n)1/r0
.

To interpolate with independence, heavy probability and
covariance cost. If γ > 2r0 + 3 then a.s. invariance principle
holds (so γ > 3).
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Bracketing entropy
Smooth sets

Exemple. Class Cd of sets in X = [0, 1]d , P uniform

bracket entropy b0/εr0 , r0 < 1/2, Minkowski-regular boundary
Massart (89) improved Révesz (76) into

kαn �GnkCd = Oa.s .
�

1
(log n)(1�2r0)/2d

�
Theorem B1 improves, even if d = 1

kαn �GnkCd = Oa.s .
�

1
(log n)(1�r0)/2r0

�
if C 2 Cd are boundary di¤erentiable through order α > d � 1
(then r0 = (d � 1)/2α) far better as regularity α ! ∞,

kαn �GnkCd = Oa.s .
�

1
(log n)α/(d�1)�1/2

�
in case of polynomial mixing, requires γ > (d � 1)/α+ 3
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Other conditions
Random entropy or geometric construction

Versions under random entropy conditions (Settati 09).

Versions for classes of functions with controled coordinates on a
basis (Haar, wavelets, features) well suited for P or a Q close to
P.

Versions for classes of functions well constructed from an
alphabet of functions. Implies a d-dimensional dimension free
rate n�1/10 for KMT (cadrants, uniform law). Becomes a
function of the mixing rate in dependent case.

Each time : the smaller is F , the stronger the mixing should be
to minimize the loss of rate.
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Basic tool
Finite dimensional coupling

We use the �nite dimensional coupling of Zaitzev

Y1, ...,Yn independent, centered, in Rd and

jYi jd < M

for all λ we can de�ne Z1, ...,Zn independent centered Gaussian,
each Zi having same covariance matrix as Yi , such that

P

 ����� n∑i=1(Yi � Zi )
�����
d

> λ

!
� c0d2 exp

�
� c2λ
d2M

�
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Random entropy
Typical rates, independent case

Random entropy condition is close of necessity to Donsker
property (it is for sets)

Settati 09 weakened L2 bracketing entropy condition by using

P

�
logN

�
σϕnp
n
,F ,L1(Pn)

�
> ϕn

�
� 1
n2

then the rate vn of approximation is

(log n)1�1/2δ ϕn = n
δ, δ < 1/2

exp(�(c log n)1/δ) ϕn = (log n)
δ, δ > 1

polynomial n�1/(5v+2) ϕn = v log n
close to n�1/2 ϕn = (log n)

δ, δ < 1
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Geometrical conditions
Classes of sets

Let C � A

empirical process

αn(C ) =
1p
n

n

∑
i=1
fIC (Xi )� P(C )g , C 2 C

dP -continuous P-Brownian bridge G indexed by C

cov(G(C ),G(D)) = P (C \D)� P(C )P(D)

Given P we construct a P-Donsker C while controling the rate
through a notion of complexity of order m
Open : work out the appropriate mixing coe¢ cients (on C
only?).
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Geometrical conditions
Strong chaining for sets

Take a countable C∞ � C, choose C�n �nite in C∞

continuity moduli operator q�n : C ! C�n , q�(C ) � C

P
�p
nY � $(n)

�
� 1
n2

for both Y = kαn � αn � q�nkC and Y = kG�G � q�nkC
chaining operator q��m : C�n ! C��m where

C��m = fC1 [ ...[ Cm : Cj 2 Pj ,Cj \ Cl = ∅ if j 6= lg

and Pj = fCj ,k : k � k(j)g are m �nite partitions

sup
C2C�n

P(Cnq��m (C )) � hn(m) # 0 as m! ∞
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Geometrical conditions
Strong chaining for sets

Geometrical intrinsic dimension m hidden in Ψ

cn = card(C�n ) dm = ∑
j�m

k(j)

Sm = ∑
j�m

k(j)


P2

Pj Ψ(m) =

hn(m)
m2d4m(log dm)2

Theorem G1. If Sm � a∞m we can construct (αn,Gn)

kαn �GnkC =

Oa.s .

 
$(n)p
n
_ log cn

n
_
s
hn �Ψ�1

�
(log n)2

n log cn

�
log cn

!
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Geometrical conditions
Strong chaining for sets

Geometrical intrinsic dimension m hidden in Ψ

cn = card(C�n ) dm = ∑
j�m

k(j)

Sm = ∑
j�m

k(j)


P2

Pj Ψ(m) =

hn(m)
m2d4m(log dm)2
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Geometrical Conditions
KMT in dimension d>2

Example. Cubes F =
n

I[s ,t ] : s, t 2 X = [0, 1]d
o

if P has a bounded density

kαn �GnkF = Oa.s .
�
(log n)d�1/2

n1/10

�
almost dimension free, improves n�1/12 (Rio 96)
partitions are dyadic, m � log n, dm � 2m , Sm bounded,
hn(m) = h(m) � 2�m , Ψ(m) � 2�5m , h �Ψ�1(x) � x1/5,
$(n) � 1/

p
n, cn � nd
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Uniform Entropy
Weighted sup-norm

Conclusion

among the �rst strong invariance principles in the mixing setting
trade o¤ between covariance bias and rate of approximation
the approximating Gaussian process becomes the limiting one
after normalization but the price is the covariance bias...
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