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Banach space type 2

Banach space B is said to have type 2
if there exists a finite positive constant cB such that for all n and
independent variables Xi , i = 1 . . . , n with E |Xi |2 <∞, EXi = 0,

E
∣∣∣ n∑

j=1

Xi

∣∣∣2 ≤ cB

n∑
j=1

E |Xi |2

A cotype 2 is for the reversed inequality to ≥ c ′B .
E.g. Lp are type 2 for p ≥ 2 and cotype 2 for p ∈ [1, 2] and if B has type
2 and cotype 2 then it is topologically equivalent to a Hilbert space.
Roughly, variables Xi are ”artificially dependent” through the geometry
of the Banach space B.
Example. Let Xi be independent commutative self adjoint
operators/random matrices and the norm is via some statistics of
eigenvalues. Start with the spectral decomposition Xi = U∗DiU then Di

are in general dependent via U (or the spectral measure)
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Banach space type 2 and mixing

What about if Xi satisfy some mixing conditions?

That is on top of the ”artificial dependence” we add a true one?

In the above example Xi = U∗DiU, Di are now in general ”doubly”
dependent = via U and due to the dependence of Xi

Do we need to introduce Banach spaces of ”mixing” type 2?

φ-mixing type 2? or ρ-mixing type 2? mixingale type 2?

Actually, Banach spaces of dependent type (cotype) 2 are going back to
Pisier (1975) (who introduced martingale type (cotype) 2 via so-called
p-smoothness.

Recently, Markov type 2 spaces (in a slightly different way) were
introduced and found to be useful in the so-called extension problem
(Naor, Peres etc)
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Result (1990)

It appears that we do NOT need an extra definition under the following
φ-mixing condition

φ :=
∞∑
j=1

φ1/2(2j) <∞ , φ(n) = usual φ-mixing coefficient

Th 1 (1990): There exists an absolute constant c such that

E
∣∣∣ n∑

j=1

Xi

∣∣∣2 ≤ cBecφ
n∑

j=1

E |Xi |2

[Initially, I could do it only with moments of order 2 + δ which bothered me. Magda pointed me to a paper by

Wlodek Bryc. Bernoulli congress - Upsalla, jaywalking with a peperoni pizza and long math discussions]
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Sketch of the proof-(i) Max inequality

The proof was based on two ingredients:
(i) The adaptation of Magda’s Max inequality in the form (with p = 2)

E ( max
1≤m≤n

|Sm|p) ≤ c
[
E
(

max
1≤k≤n

|Xk |p
)

+ max
1≤k≤n

(E |Sk,n|)p
]

where Sn = X1 + . . .+ Xn, Sk,n = Xk + . . .+ Xn.
The argument was based on the following adaptation of Skorohod trick.
Let Mk = max1≤m≤k |Sm|, Ak(x) = {Mk−1 ≤ x ,Mk > x}. Then

{|Sn| ≥ x + y + z)} ⊆ { max
1≤k≤n

|Xk | > y} ∪ ∪n
k=1Ak(x) ∩ {|Sn − Sk | > z}

by φ-mixing applied to term Ak(x) ∩ {|Sn − Sk | > z}
P(|Sn| ≥ x + y + z) ≤ P(max1≤m≤n |Xk | > y) + ηP(Mn ≥ x)
where η = φ(1) + max1≤k≤n P(|Sn − Sk | > z) and then apply the
Levy-Cohn argument to the max variable Mn.
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Sketch of the proof-(ii) dyadic induction

(ii) The dyadic induction ”small blocks” technique, i.e. to use the dyadic
induction step in the form

E‖Sn − (S ′n/2 + S ′′n/2)‖2 ≤ c(φ(n1/3) + n−1/3)
[
n + E max

1≤k≤n
|Sk |2

]
where variables S ′n/2 and S ′′n/2 are independent and S ′n/2 =d Sn/2,

S ′′n/2 =d Sn − Sn/2 and where we applied the Bryc coupling

P(|X − Y | ≥ t) ≤ 2φ(1)P(|Y | ≥ t/2)
Then approximate Sn/2 ≈ S ′n/4 + S ′′n/4 and carry on until h ≤ n/2k < 2h
for some large but fixed h to get

E‖Sn − (S
(1)
n/2k + . . .+ S

(2k )
n/2k )‖2 ≤ error, summable by Gronwall lemma

where S
(i)
n/2k are independent, roughly partial sums of size h

and so by B-type 2 condition E |sum|2 ≤ chcB

∑n
i=1 E |Xi |2
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Back to the future (2000)

Open questions

(Hinted during numerous discussions with Magda)

(i) The Cotype version under good phi mixing conditions?
The trouble is that lower bounds are not valid in general even for the real
valued variables.
(ii) Can we replace the φ-mixing condition by the following ρ-mixing
Σ∞1 ρ(2j) <∞? or perhaps under stronger ρ-mixing rates?
Some partial results can be derived for Lp using the moment inequality
under stronger mixing rates. Inequalities can be used to extend/improve
asymptotic results for Banach valued statistics of dependent variables
(Bingham, Bosq, Dehling, Gotze, Merlevede etc)
Alternatively, it is probably easier to work with 2-smooth Banach spaces,
i,e. such that |x + y |2 + |x − y |2 ≤ |x |2 + D|y |2 for all x , y , and projective
criteria, which gives for the stationary case (Pj(X1)=projection operator)
E |a1X1 + . . .+ anXn|2 ≤ cD(Σn

1a
2
j )(Σj‖Pj(X1)‖)2
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ρ∗-mixing and maximal inequalities

How to prove the Kolmogorov maximal inequality under ρ∗-mixing?
More exactly, now let {Xk} be a ρ∗-mixing sequence that is

ρ∗n = sup
Q,T
{ρ(FQ ,FT )} → 0

where the sup is taken over all subsets Q,T ∈ Z such that |x − y | ≥ n
for all x ∈ Q and y ∈ T .

Magda come up with the fascinating argument using the invariance principle! but unfortunately it needed

stationarity.

The other approach was to use a so-called extremality trick that is to
bound

an := sup
k

max
0≤a≤n

E [ max
0≤j≤a

|Xk + . . .+ Xk+j |2]/(‖Xk‖2 + . . .+ ‖Xk+j‖2)
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stationarity.

The other approach was to use a so-called extremality trick that is to
bound

an := sup
k

max
0≤a≤n

E [ max
0≤j≤a

|Xk + . . .+ Xk+j |2]/(‖Xk‖2 + . . .+ ‖Xk+j‖2)
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max inequality under ρ-mixing

How it worked under ρ-mixing?

Several ways to go. Most common one is to use the following Garsia trick

M2
n ≤ 4S2

n +
n∑

j=1

Dj(Sn − Sj) where
∣∣∣ u∑

i=t+1

Di | ≤ max
t≤j≤u

|Sj − St |

and use for example, the dyadic induction together with the extremality
argument to derive

an ≤ aT (n)(1 + c[ρ(n1/3) + n−1/9])

where T (n) ≤ (n/2)(1 + n−1/3) by a combinatoric argument.
Th(New result) Assume that ρ = Σρ(2n) <∞. Then

E max
1≤j≤n

|X1 + . . .+ Xj |2 ≤ ecρ(E [X 2
1 ] + . . .+ E [X 2

n ])

However, it does require the extra rate Σρ(2n) <∞.
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ρ∗ - mixing case

We apply the Bryc–Smolenskii–Peligrad– Gut (with p = 2)

E max
1≤k≤n

|Sk |p ≤ c
[(

E max
1≤k≤n

|Sk |
)p

+
n∑

j=1

E |Xj |p +
( n∑

j=1

E |Xj |2
)p/2]

Start with Xi , with zero means and Var(X1) + . . .+ Var(Xn) = 1 and
write Xi = Xi,<M + Xi,>M (truncate and centralize).

Tails are bounded by Chebyshev argument Σn
1E |Xi,>M | ≤ 2M1/2

And for the variables Xi,<M (bounded by 2M) we use the blocking
procedure via the non-random stopping times

mk = min{m : m > mk−1,

m∑
j=mk−1+1

Var(Xi,<M) > 1/M}

and the blocks Xmk−1+1,<M + . . .+ Xmk ,<M admit handy moment
bounds.
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1E |Xi,>M | ≤ 2M1/2

And for the variables Xi,<M (bounded by 2M) we use the blocking
procedure via the non-random stopping times

mk = min{m : m > mk−1,

m∑
j=mk−1+1

Var(Xi,<M) > 1/M}

and the blocks Xmk−1+1,<M + . . .+ Xmk ,<M admit handy moment
bounds.
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Probabilistic approach (in progress)

Lemma (New inequality)

P(f (X ) > x + 6y) ≤ P(f (X ) > x)[ρ∗1 + P(f (X ) > x)] + 7P(K‖εX‖ > y)

where X = (X1, . . . ,Xn), εX = (ε1X1, . . . , εnXn) and εi are iid
Rademacher independent of X , ‖ · ‖ is a seminorm and f is the
coordinatewise nondecreasing with the Lipschitz coefficient K , i.e.
|f (x)− f (y)| ≤ K‖x − y‖
Actually, it can be applied not only to derive the moment inequalities but
also the maximal inequalities by treating the max seminorm.
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