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STABLE LIMITS FOR AN IID SEQUENCE

e For an iid real-valued sequence (X;) consider the partial sums
S,.=X1+---+X,,,n > 1.

e Using classical limit theory for sums of independent random
variables, e.g. Gnedenko, Kolmogorov (1954), Feller (1971), Petrov (1975, 1996), one
can show that there exist sequences 0 < a,, — o0 and b,, € R

and a random variable Y with non-degenerate law H such that
a'(Sy—by) SY ~ H

if and only if either f(x) = EX?Ijx|<z}, € > 0, is slowly
varying or X is regularly varying with index a € (0, 2), i.e.,

there exist p,g > 0 with p + g = 1 and a slowly varying



function L such that

L@ hd P(X < —a) ~ g2

P(X >x)~p—— —,
x x

e H=H,, o € (0,2], is a-stable in the convolution sense, i.e. for
any n > 2 and an iid sequence (Y;) with common distribution

H, there exist ¢, > 0 and d,, € R such that

lYit- o+ Yy—dy) =Y.

e Moreover, for o € (0,2), (a,) can be chosen such that

P(|X| > ap) ~n~ ' and b, = n EXI{x|<a,}
e Classical proofs are based on characteristic function arguments.
e An alternative way of proving this result goes back to LePage,

Woodroofe, Zinn (1981), Resnick (1986); see also Resnick (2007).



e Since regular variation of X for any a > 0 is equivalent to the

weak convergence of the point processes

n d e @)
N,=) e,1y, = N =) &5~ PRM(n)
t—=1

t=1

for some Poisson random measure N with mean measure p on

R\ {0} given by
pldx) = [px “Ipsoy + q || “Tizcoy] do .

e The mapping T, : M, — R given by

To(m) =Te() ej) = D delgj>e
t t

is a.s. continuous relative to the distribution of N for every

e > 0.



e Hence
n B d e @)
T(Nn) =D (0" X0 (a1 x5y — Te(N) = 3 _ Tl (5154 -
t=1 t=1
e For a € (0, 2) the right-hand side has a limit as € | 0 (with
additional centering for o € [1,2)): series representation of an
a-stable random wvariable.
e Example. Assume p = 1 (X is totally skewed to the right) and
a € (0,1). Then N =3 " € —1/a, where 0 <TI'y <T <-.- are

the points of a homogeneous Poisson process. Hence

L - -1/« a.s. - -1/«
T.(N) = ;I‘t I{|Ft—1/a|>€} — ;I‘t ase] 0.

which represents an a-stable random variable.



e It finally suffices to show that

limlimsup P(|a,'S, — T.(N,) — E(-)] >68) =0, é>0,

€l0 nooo

e.g. by showing that var(a 'S, — T.(IN,,)) can be made small.



(GENERALIZATIONS TO DEPENDENT SEQUENCES

Linear processes.

e Recall the definition of a linear process
(1) X, =) ¥;Z;, te€L,
j=0

for sequences of suitable constants v;, 7 € Z, and an iid
sequence (Z;).

o If Z is regularly varying with index o > 0, i.e.,

L L
PZ>z)~pP® and P(Z < —a) ~ g 2P

re e
and the series (1) converges a.s. then X is regularly varying

with index a > 0.°

2The converse is not true in general; see Jacobsen, Mikosch, Rosiniski, Samorodnitsky (2009).



e In a series of papers, Davis and Resnick (1985, 1986) proved that the
sequence of the partial sums (a;'S,) has a stable limit for

a € (0,2). They also showed the joint convergence for
Z (angta a "X, a "X X1, a,:lXtXtJrh) — b,
t=1

towards a mixed stable distribution. This was achieved by
using the weak convergence of the underlying point processes
and a continuous mapping argument.

® Phillips and Solo (1992) used the structure of a linear process to show

that, under general weak dependence conditions,

n

' [ X =D i)z =0,
t=1 j=0  t=1

thus the stable CLT for (X;) follows from the one for (Z;).



® Kasahara, Maejima, Vervaat (1988) also considered stable FCLT's in the

case of strong dependence.
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Mixing conditions.
e Let (X;) be a strictly stationary sequence with partial sum
process S, = X; + .-+ X,,, n > 1.
® Davis and Hsing (1995) proved stable limit theory by using the point
process approach.
® Davis and Hsing (1995) require the mixing condition A(a,,) in terms
of the point processes

m n
Nom = E €,-1x, and N, = N,,, = g €u-1x, -
t=1

t=1
e They require closeness of the Laplace functionals

Ee =/ fdNn _ (Ee_fdenm)kn — 0,

where m = m,, — oo, k, = [n/m]| — oo.



® Bartkiewicz et al. (2010) prove stable limit theory by using
characteristic functions.
® Bartkiewicz et al. (2010) require a mixing condition in terms of the

characteristic functions
Qon(m) — Eeiwaglsn and Qonm(w) — Eeimar—LlSm .
e They require closeness of the characteristic functions
kn
pn (L) — (Qonm(w)) — 0,

where m = m,, — oo, k, = [n/m]| — oo.
e Conditions of this type as well as A(a,) follow from strong

mixing with suitable rates.
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e These conditions imply that the corresponding limits, if they

exist, are infinitely divisible.
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Conditions on the tails.

e To ensure convergence to an infinite variance stable limit, we
require regular variation of the finite-dimensional distributions
of (X;) as in Davis and Hsing (1995) and Bartkiewicz et al. (2010):> There

exist a« > 0 and, for every h > 1, a non-constant vector ®; on

the unit sphere of R" such that for Y, = (X1,...,X}3), as

Tr — 00,
P(lYy| > xc
(il >ze) o
P(|Yn| > x)
and
P(Yrn/|Yn| € - | |[Yr| > x) il PO, € .).

SRegular variation is not necessary for partial sum convergence of a strictly stationary sequence; Surgailis
(2004), Gouézel (2004)
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e We say that (X;) is regularly varying with index a > 0.
e An equivalent definition is the following: for every h > 1, there

exists a non-null Radon measure p; on @h\{O} such that
nP(a, 'Y, €-) = pn(),
where (a,) satisfies P(|X| > a,) ~ n~1.

e The measure pu; satisfies pup(t A) =t *up(A), t > 0, for some
a > 0.



e Examples. Infinite variance stable stationary processes.
ARMA /linear processes with iid regularly varying noise.

Stochastic recurrence equations X; = A; X;_1 + B; with iid
non-negative ((A;, Bt)) Kesten (1973), Goldie (1991).
GARCH processes Xy = 0:Z; with iid noise (Z;) with infinite

support.

15

Stochastic volatility processes with regularly varying noise (Z;).

Transformed Gaussian stationary sequence such that the

one-dimensional marginals are regularly varying.
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e If (X;) is regularly varying with index a > 0 so are the linear
combinations of any finite segment of this sequence: for A

bounded away from zero with a smooth boundary,
nP(a'Si € A) - pa({x €R: 2y +---+ x4 € A}).
e In particular, for d > 1,
P(Sq>x) ~p(d) P(|X|>x) and P(Sq< —x) ~ q(d) P(|X]|> ).
® (p(d))a>1 and (g(d))qs>1 measure the strength of dependence in

(X:) with respect to the tails of partial sums.
e Example. For (X;) iid and X > 0, P(Sq > =) ~d P(X > x).

For X; =X >0, P(Sg>z) =P(dX >x) ~d*P(X > x).



MAIN RESULT

Assumptions.

e The strictly stationary sequence (X;) is mixing in the sense

on(@) — (pam(@) " =0, @R,
where m = m,, — oo, k, = [n/m] — oo.
e (X;) is regularly varying with index o € (0, 2)
e An anti-clustering and a centering condition hold.

e The following limits exist?

(Jak) p = lim[p(d) —p(d —1)] and ¢ = lim|g(d) —q(d —1)].

4This condition was introduced in Jakubowski (1993,1997).

17



18

e Then p,q > 0 and for (a,) with P(|X| > a,) ~ n™ %,
a;lsn KA Y., where Y, is a-stable with characteristic function
Y.’ given by
o log ¢a(m)
I'2— «a)

Edm
1l — o

((p + q) cos(wa/2) —isign(x) (p — q) sin(ma/2))

— Xa(wap7Q)7 reR.

5Shown for ar # 1 only.
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e The condition (Jak) implies that p = lim,_,., d 'p(d) and
q = limy .., d 'q(d) exist.

e Examples. my-dependence: p = p(mgy + 1) — p(my),
q = q(mo + 1) — g(my).
Stochastic volatility model: X; = 0,Z; with stationary Gaussian
log o and iid regularly varying (Z;): p =dp — (d — 1)p and
q=dq— (d—1)g.
Stochastic recurrence equations: X; = A;X;_1 + B; with iid
non-negative ((A;, B:)). Let E[A*] = 1 have the (unique)

solution o > 0. Then (Xj;) is regularly varying with index «
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and
P(X >x)~cyx™™, x— 0.
e With IT, = A,--- A;,, t > 1,
(X1y...5Xq) = Xo(I1,...,I1y) + Ry

where X is independent of R,4, II;,...,11,.
e Hence, with 7,; = Zle I1;, by a result of Breiman (1965)
P(Sqa>x) ~P(XoTy>=x) ~ P(Xo>x)E[T]]
and p(d) = E[T{]. Since E[A°] =1,
p(d+1) —p(d) = E[T;,,] - E[T7] = E[Ag, (1 + Ta)%] — E[T]]

= B[(1 +To)" — Tg] — E[(1 + Too)® — T2



e Although E[TS| = oo,
d'E[TY] = E[d™V*T4* — E[(1 + Ts)* — T2] < 00.
e Squared GARCH processes can be embedded in stochastic

recurrence equations. Similar results hold for (th) and (0't2)

and also for (X3).
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MAIN IDEA OF PROOF
e In view of the mixing condition it follows that (a;'S,) has the
same limit as (a_ ' > Sp;), where S;,;, ¢ =1,...,k,, are iid
copies of S,,.

e For this triangular array, it suffices to show that

knr, ("an(w) — 1) = k, log "an(w) + 0(1) — log "pa(w) — _Xa(wv P q) .

e Key lemma. Under regular variation of (X;) and with the

anti-clustering condition,

lim lim sup ‘kn (Pam(z) — 1) — n (Pra(z) — gon,d_l(a:))| =0, xe€kR.

d—oo pooo

e Under regular variation of Sy,

n (Qond(w) - 1) — —Xa(z,p(d),q(d)), = €R,



and

Xo(z,p(d), ¢(d)) — Xa(z,p(d — 1),q(d — 1))
= Xal(z,p(d) —p(d —1),9(d) — g(d — 1))

— Xa(wa D, Q)
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RELATED WORK

® Balan and Louhichi (2009) use the point process process approach for
partial sums of triangular arrays of dependent random
variables to show convergence towards infinitely divisible laws.

® Buraczewski, Damek, Guivarc’h (2009,2010) prove limit theory for
multivariate stochastic recurrence equations X; = A; X;_1 + B;
without extra mixing conditions.

® Tyran-Kaminska (2010) proves a FCLT with stable Lévy motion under

the condition

P(1X;| > x| [Xo| >x) =0, j =1,

which is necessary under the J;-topology.



® Basrak, Krizmanié¢ and Segers (2010) prove a FCLT with stable Lévy
motion in the M;-topology under A(a,) and using the point

process approach.
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Ficure 1. Til lykke.



