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Classical Hsu-Robbins theorem

Hsu-Robbins and Erdos

A famous result by Hsu and Robbins (1947) says that if Xi, X, ...
is a sequence of independent identically distributed random
variables with zero mean and finite variance and

S, =X1+...+ X,

then
D P (ISa] > en) < o0

n>1

for every ¢ > 0.
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Classical Hsu-Robbins theorem

Note that, by the law of large numbers,

% —n—oo 0= E(X1)

so
P(|Sp| >en)=P (\i"\ > 5) — oo 0

for every € > 0.

So, the result of Hsu-Robbins says that if the variance of Xj is
finite, this convergence is strong enough to ensure the summability
of the series.
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Classical Hsu-Robbins theorem

Later, Erdos (1949) showed that the converse implication also
holds, namely if the series

Z P (|Sn| > en)

n>1

is finite for every € > 0 and X1, Xp, ... are independent and
identically distributed, then EX; = 0 and EX12 < 0.

Since then, many authors extended this result in several directions.
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Classical Hsu-Robbins theorem

Spitzer's showed that

1
> ~P(|Sn] > en) < o0

n>1

for every ¢ > 0 if and only if EX; = 0 and E|X;| < c0.

So, one introduces the factor % to "help” the convergence of the
series and one needs a weaker conditions on the moments

Also, Spitzer's theorem has been the object of various
generalizations and variants.
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Classical Hsu-Robbins theorem

One of the problems related to the Hsu-Robbins' and Spitzer's
theorems is to find the precise asymptotic as

e—0

of the quantities

> P (ISn| > en)

n>1

and

Z%P(w > en)

n>1

Obviously, these sequences goes to co when ¢ — 0.
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Classical Hsu-Robbins theorem

Heyde (1975) showed that

. 2 _ 2
lim ¢ > P (ISa| > en) = EX] (1)

n>1

whenever EX; = 0 and EX12 < 00. In the case when X is attracted
to a stable distribution of exponent o > 1, Spataru proved that

Z P (|Sn| > en) = (2)

€—>0 — Iogs

It also holds for the Gaussian case : the limit is 2
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Variations of the fractional Brownian motion

Variations of the fractional Brownian motion

Our purpose is to prove Hsu-Robbins and Spitzer's theorems for
sequences of correlated random variables, related to the increments
of fractional Brownian motion or to moving averages sequences

Recall that the fractional Brownian motion (Bf’)te[o’l] is a
centered Gaussian process with covariance function

RH(t,s) = E(Bf'B) = L(t?M + s2H — |t — s|2M). It can be also
defined as the unique self-similar Gaussian process with stationary
increments.
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Variations of the fractional Brownian motion

Concretely, in this paper we will study the behavior of the tail
probabilities of the sequence

AR SUACH CREN ) G
=(d) ”z—:l Hg (Bk+1 — Bx)
k=0

Where B is a fractional Brownian motion with Hurst parameter
€ (0,1) (in the sequel we will omit the superscript H for B) and
Hq is the Hermlte ponnom|a| of degree g > 1 given by

Hq(x) = (~1)%e2 %(e_%)-
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Variations of the fractional Brownian motion

If g =1 we have X, = n" <Bﬁ — BK> and

EX, X £ 0

(unless H=1))
If g =2 then

Xk = H2 (HH (Bﬁ — BK>>

— (" (Bun - 81)) -1
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Variations of the fractional Brownian motion

In our case the variables are correlated. Indeed, for any k,/ > 1 we
have

E (Hy(Bic — B Mol Brsa — B1)) = s ol — )

where the correlation function is

pH(k) = % ((k +1)2H 4 (k—1)2H — 2k2H>

which is not equal to zero unless H = % (which is the case of the
standard Brownian motion).
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Variations of the fractional Brownian motion

The convergence of the sequence V.

Let g > 2 an integer and let (B:)+>0 a fractional Brownian motion
with Hurst parameter H € (0,1). Then, with some explicit positive
constants ¢ g H, C2,.4q,H depending only on g and H we have

i 1f0 < H<1- 4 then

Vi
s N(O,1 4
ond (0,1) (4)

HJH—%<H<HMn

Vi
cogni-ai =)

where Z is a Hermite random variable (an iterated
stochastic integral)
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Variations of the fractional Brownian motion

Example : for g = 2 we have the quadratic variations of the fBm
which converge as follows :

if 3
H< —
4
these variations converge (after normalization) to the normal law
and
if 3
H> —
4

these variations converges (after normalization) to a non-Gaussian
law (double stochastic integral, Rosenblatt)
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Variations of the fractional Brownian motion

Our purpose : prove precise asymptotics in Hsu-Robbins theorem
for V,, that is look to the quantities

> P(Vy>en)

n>1

and

Z%P(Vn > en)

n>1

-no problems related to the existence of moments

-for every £ > 0 the above series are convergent

- we will use chaos expansion and Malliavin calculus (the so -called
Stein method)
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Multiple stochastic integrals

Multiple Wiener-1to integrals

Let (W;)tefo,1) @ standard Wiener process.

If f € L2(]0,1]") we define the multiple Wiener integral of f
with respect to W
Let f be a step function (f € S), that means

f= § Cicin LA . XAy,
oo

(here c; i, = 0 if two indices ik and i are equal and the sets
A; € B([0,1]) are disjoint). We define for such a step function

In(F) =Y ci iy W(Ay) ... W(A;)

17---7’.17
where e.g. W([a, b]) = W), — W..



Multiple stochastic integrals

We have that
e the application /, is an isometry on S, i.e.

E(/h(f)Im(g)) = ”!<fag>L2([o,1]n) fm=n

and

E (/n(f)lm(g)) =0if m 7é n
e the set S is dense in L2(]0,1]")

Therefore I, can be extended to an isometry from L2([0,1]") to
L2(9).
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Multiple stochastic integrals

In(f) = I,(F) where f is the symmetrization of f

Remark : |/, can be viewed as an iterated stochastic It6 integral

1 th to
In(f):nl/ / / f(tl,...,tn)thl...thn
0o Jo 0
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Multiple stochastic integrals

Hermite random variable

The Hermite random variable of order g > 1 that appears as limit
in the above theorem is defined as

Z = d(q, H)lq(L) (6)

where the kernel L € L2([0,1]9) is given by

1
L(yl,...,yq):/ 81KH(u,y1)...61KH(u,yq)du.
y

1V...Vyq
The constant d(gq, H) is a positive normalizing constant that
guarantees that EZ? = 1 and K" is the standard kernel of the
fractional Brownian motion. We will not need the explicit
expression of this kernel. Note that the case g = 1 corresponds to
the fractional Brownian motion and the case g = 2 corresponds to
the Rosenblatt process.
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Hsu-Robbins theorem for the increments of the fBm

Let us denote, for every € > 0,

fi(e) = Z %P(Vn >en) = Z %P <Z,Sl) > clf;Heﬁ) (7)

n>1 n>1

where
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Hsu-Robbins theorem for the increments of the fBm

while if 1 — % < H < 1, we are interested in

fle) =) lp (Vn > £n2’2q(1*H)> => 1p (Zr(,z) > ¢} ent90-H)
n=1 o1 v
(8)
where
7@ _ Vi
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Hsu-Robbins theorem for the increments of the fBm

It is natural to consider the tail probability of order n2—29(1=H)

because the L2 norm of the sequence V,, is in this case of order
nlfq(lfH).

We are interested to study the behavior of fi(¢) (i =1,2) ase — 0.

For a given random variable X, we set
Ox(z)=1-P(X <z)+P(X<—2).
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Hsu-Robbins theorem for the increments of the fBm

The first lemma gives the asymptotics of the functions f;(¢€) as
e — 0 when Z\) are replaced by their limits.

Consider ¢ > 0.
i. Let Z() be a standard normal random variable.

Then as

Z (DZ(I CE\/>) —e0 2.

Iog ce

ii. Let Z@ be a Hermite random variable or order q
given by (6). Then, for any integer g > 1

1 1 1
- ~ 1—q(1-H) y— .
—log ce ; n ze(cen ) memo 1—q(1—H)
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Hsu-Robbins theorem for the increments of the fBm

Let g >2and c > 0.
LIfH<1-— %, let Z() be standard normal random variable.
Then it holds

_|olgcE > %P (12891 > cevn) =3 %P (120 > cevn)
n>1 n>1

—¢—0 0.
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Hsu-Robbins theorem for the increments of the fBm

ii. Let Z® be a Hermite random variable of order g > 2 and
H>1- 5. Then

1 1
—_— Z -P (|Z,(,2)| > csnlfq(lfH)) —
—log ce =

Z %P (|Z(2)\ > csnl_q(l_H))

n>1

—¢—0 0.
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Hsu-Robbins theorem for the increments of the fBm

Idea of the proof

For the part i), it is based on Stein's method and Malliavin
calculus (F is arbitrary, Z ~ N(0,1)) (Nourdin -Peccati)

zgﬂg\P(F <z)-P(Z<2z)|= sup |E(F(F) = Ff(F))|

where f; is the solution of the Stein's equation

Lcooz)(X) = P(Z < z) = f'(x) = xf(x), x€R.
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Hsu-Robbins theorem for the increments of the fBm

Since
EFf(F) = ESD(—L)"'Ff(F) = Ef'(F){(D(—L)"'F, DF)

we obtain

sup |P(F < 2) ~ P(Z < 2)| < (E(1 — (DF. D(~L)"LF))?)?

D is the Malliavin derivative, L the Ornstein-Uhlenbeck operator
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Hsu-Robbins theorem for the increments of the fBm

To get a feeling
DsW; = 1[0,t](5)

DW= nW=D; W,

Dsln(f) = In—1(fa(-, 5))
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Hsu-Robbins theorem for the increments of the fBm

It follows that

sup |P (Z,(,l) > x) - P (Z(l) > x)’

x€ER
%7 H e (0’ %]

<c!d nf1t He [%,gg%g)
e e (3 k)
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Hsu-Robbins theorem for the increments of the fBm

and this implies that

1
> —sup|P (28 > x) - P (20> X))
>1 N xeRr
n>
> on>1 n\lﬁ, H e (0,3]
<cd Ypn? Hel3553)

>~ . 27 2q—-2
H—q—> 2g—3 1
s n?T2, He 555,11 5)
and the last sums are finite (for the last one we use H <1 — %)
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Hsu-Robbins theorem for the increments of the fBm

We state now the Spitzer's theorem for the variations of the
fractional Brownian motion. Let fi, f, be given by

fi(e) = Z P(Vo>en)=Y = P(Z(1’>c1qHsf) (9)

n>1 n>1

and

B0 = 0 2P (V> et 200-) — 3 Lp (7005 1 cpieaion
(10)
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Hsu-Robbins theorem for the increments of the fBm

LHO<H<1—%tMn

1
lim ——— f(e) = 2.
e=0 log(c; f; 4€) 1(©)

WH1>H>1—ﬁtMn

im —— () =
Olog(eyfrge) - 1-q(L—H)
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Hsu-Robbins theorem for the increments of the fBm

for every e >0

gi(e) =Y P(IVal > en) (11)

n>1
ifH<1—2—1q and by
o) = Z p <|Vn| > 5n2_2q(1_H)) (12)
n>1

if H>1-— 2—1‘7. and we estimate the behavior of the functions gj(¢)
as ¢ — 0. Note that we can write

qie)=Y P (yz§1>| > c;é}m;*ﬁ)

n>1

(e) = Y P (12871 > g} yent90)

n>1
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Hsu-Robbins theorem for the increments of the fBm

We decompose it as : for H < 1 — %

g(e) = Zp(yz<1)y>c1j;ﬂgﬁ)

n>1

+ S [P(1Z01> gk yeva) - P (120> L yevin)]

n>1

and for H >1— L

2q
82(e)
= Z P (]Z(2)] > €C2—,;7Hn1—q(1—H)) 4
n>1
2 - - - — _ _
Z [P (|ng )| > Czyi,_,snl q(1 H)) - P (\2(2)‘ > Cz,;,H’f”l q(1—H
n>1
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Hsu-Robbins theorem for the increments of the fBm

Theorem
Let g > 2. Let ZW) pe a standard normal random variable, 7 4
Hermite random variable of order q > 2. Then

i /f0<H<1—2—1q, we have

(ci;VHa)zgl(s) —. 01=EZOW.

ii. If1— 55 <H<1we have

-1 = @) |Ts0=A
(C2,q,H€) a1=H) gy(g) —c—o E|Z\9)|1-40-H),
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Moving averages

Joint work with Solesne Bourguin (Paris 1)
we will consider long memory moving averages defined by

Xy = Z ajen_i,h €7

i>1

where the innovations ¢; are centered i.i.d. random variables
having at least finite second moments and the moving averages a;
are of the form a; = i~#L(i) with 3 € (,1) and L slowly varying
towards infinity. The covariance function p(m) = E (XoX)
behaves as cgm™2%+1 when m — oo and consequently is not
summable since 5 > % Therefore Xj, is usually called long-memory
or “long-range dependence” moving average.
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Moving averages

Let K be a deterministic function which has Hermite rank g and
satisfies E(K2(X,)) < 0o and define

N
SN = Z [K(Xn) - E(K(Xn))] :
n=1

Suppose that the «; are regularly varying with exponent —g,
Be(1/2,1) (ie. aj = |i| " L(i) and that L(i) is slowly varying at
00). S Then

i.If g<(28—1)71, then

Ba-i-1g  __, (k)
h 5N S, 2 (13)

where Z(@) is a Hermite random variable of order g
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Moving averages

i. If g> (28 —1)71, then

1
s N(0,1 14
oo/ i MO (14)

with o g a positive constant.
Wu (2006), H-C Ho and T. Hsing (1997), Peligrad and Utev

(1997)
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Moving averages

Take also the innovations € to be the increments of the Wiener
process
gi=Win—W,

Take K = H, the Hermite polynomials
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Moving averages

Note that X, can also be written as

Xn = Zai (Wn—i - Wn—i—l) = Z@ill (]-[n—i—l,n—i])
i=1 i=1

= h > el iiag | =h(f). (15)
i—1
I
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Moving averages

As K = Hg, Sy can be represented as
N 1 N

Svo= Y [Hq(h(fa)) = E(Ha(h(f))] = = D [lg(£7°9) — E (Ig(£;9)
n=1

1 1
= q!zllq(fn@)") = a’q(z 29).
n—=
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Moving averages

In order to apply the same techniques, we need the speed of
convergence of Zy = cSy/v N to the normal law, that means, we
need to bound

sup |P(Zy < z) — P(Z < 2)|
zeR
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Moving averages

we will evaluate the quantity

E ((1 gt \DZNH%)2> .

(this is the bound obtained via Malliavin calculus).

We have
1 N q N
. _ -1
DtZN = Dt <0-\/N nz::l Iq (fn®q)> = m nzz:l Iq—]_ (fn®q ) fn(t)
and

2 N
IDZy|3, = UZW S o (fk®q’1) g1 (f,®q*1) (Fi, 1) 16)
k,l=1
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Moving averages

The multiplication formula between multiple stochastic integrals
gives us that

lg—1 (fk®q_1) lg—1 (f/®q_1>

q—1 g—1 2 B

> < , > bhq—2-2r <fk®qflfr®f/®q717') (Fis 1)
r=0

By replacing in (16), we obtain

1DZn |3,
q—1 1
= —qN r'( ) Z hqg—2-2r <f®q - "R - r) {f; )7
=0 k,/=1
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Moving averages

Theorem

Under the condition q > (23 — 1)~1, Zy converges in law towards
Z ~ N(0,1). Moreover, there exists a constant Cg, depending
uniquely on (3, such that, for any N > 1,

sup|P(Zy < 2)—P(Z<2)| < C
BpIPEn <= PZSANSG Ty g e
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Moving averages

when q> 25%1

fie) = Y. %P (wlﬁ |Sn| > E‘JFN>

N>1

5 (im0

N>1
1 1 evV'N ev'N
+NZ>:1N P(a W\SN|> . >—P<|Z|> . )

where Z denotes a standard normal random variable.



Moving averages

Proposition

When q > 25%1

1+3-pBq

V.

It is also possible to give Hsu-Robbins type results, meaning to find
the asymptotic behavior as ¢ — 0 of

=Y P(ISn| >eN)

N>1

when g > 25%1
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