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I. ARCH(oc0) processes

An ARCH(oco) process is the solution of a stochastic recurrence
equation
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where ag > 0, a; > 0 and {en} is an i.i.d. sequence with zero
expectation and unit variance and o, > 0.

Engle (1982), Robinson (1991).

The solution is said causal if o2 is measurable with respect to
the sigma-field 77 _; generated by ¢, k < n.

We are interested in finding causal and stationary and non trivial
solutions to Equation ([1]).



e | he weakly stationary case

A weakly stationary solution exists if and only if 2;?021 a; < 1. It
IS then given by the Volterra series expansion
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which is almost surely convergent and
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Exemple: GARCH(p, g) processes.

GARCH(p, g) are a parametric subfamily of ARCH (oco) processes.
They are solutions of a stochastic recurrence equation
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A weakly stationary solution exists if and only if
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Bollerslev (1986).



e Fourth order property and weak convergence

Giraitis and Surgailis (2002) give a necessary and sufficient con-
dition for finite fourth moment. This condition implies that
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Since an ARCH(o0) is associated, this implies that the partial
SUM process
[nt]
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converges in the skorohod space D to the Brownian motion.

The squares of a fourth order stationary ARCH process cannot
long exhibit memory.



II. Integrated ARCH processes

An ARCH process is said to be integrated (IARCH) if it satisfies
Equation (1) with

o0
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j=1

Consequence: If a stationary solution exists, then

E[X?] = .



Conditions for existence of causal and stationary solutions de-
pend on

e the sequence {a,};

e the distribution of the noise {en}.



Exemple: IGARCH(p, q) process.

An IGARCH(p, q) process is a process that satisfies (3)) with

(4)



Bougerol and Picard (1992) gave a necessary and sufficient con-
dition in terms of the top Lyapunov exponent of some random
matrices.

This necessary and sufficient implies some necessary and some
sufficient conditions.

o Z§:1 bj <1 is a necessary condition.

e If the distribution of ¢g has unbounded support, if it has no
mass at 0 and if all the coeficients a; and b, are positive, then
Equation (3) has a unique strictly stationary solution in the in-
tegrated case (4)).
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A general result for IARCH(0).
KazakeviCius and Leipus (2003).

e If a; < CrJ for some r € (0, 1);
o If E[logy(e3)] < oo;

Then there exists a causal stationary solution.

Open questions
e What if the coefficients a; decay slowly?
e [ails and memory properties?
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III. The FIGARCH(O0,d,0) process.

In order to model long memory in volatility, Baillie et al. (1996)
consider Equation (1)) with coefficients

a](d) — (_1)j—1 (d) _ d(l — d) T (.7 —1-— d)
j : ‘
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Does there exist a stationary solution?
e T he econometric literature takes it for granted.

e KazakeviCius and Leipus (2003) doubted it because the top
Lyaponov exponent of such a process would be zero, which rules
out existence of a stationary solution in the IGARCH case.
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e A simple approach

Denote up = E[egp] and Ap =322 ag.

The Volterra series expansion (2) is always well-defined since
every terms in it are positive. Define
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This series is either infinite or almost surely convergent.
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In both cases, for any p € (0,1), we can apply the inequality

(a +b)P < al + b

which vyields

Hence
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T hus a sufficient condition for the convergence of the series is

Ap po, < 1. (6)
This is possible since A1 = pu; =1 imply Ap > 1 but up, < 1.
e Robinson and Zaffaroni (2006).
If this holds, define o, = /Sn and X, = onen.

Then Xy, is a causal and stationary solution to Equation (1)) such
that

E[|Xnl] < 0o
for all ¢ < 2 and E[X2] = .
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e A necessary and sufficient condition for (6]
Assume that A« for some p* < 1.

Condition (/6]) holds for some p € (0,1) if and only if

S a;109(a;) + El3109(2)] € (0, 00] (7)

j=1

e This holds for any coefficients a; in the following cases:
o Eleglog(e3)] = +oo  (but recall that E[ef] = 1);

o if P(eo =0) > 0.
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e Proof: The function

o0
2
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is convex and the quantity in (7]) is its left derivative at 1.



e Application to the FIGARCH process
Assume that P(e5 =1) < 1.

Then there exists d* € [0,1) such that, for all d € (d*, 1),

f:l(—l)ﬁl (§) 109 ((=1)7T1 (%)) + Eleglog(3)] > 0.
i=

hence the FIGARCH equation has a unique causal stationary
solution that satisfies E[|Xy|?P] < oo for all p < 1.

e Proof: the first term in the left hand side tends to zero as d
tends to 1.
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IV. Open questions.

e A weaker condition than ([7]) is needed. Preferably, a condition

which does not tie the coefficients a; and the distribution of ¢g.

e Exact tail behaviour: We know that E[|X | < oo for all g < 2.
But we do not know the exact tail behaviour of X2. Is it regularly
varying with index —17

e Short or long Memory?

e For q <2, does the partial sum process of X1 converge to a
process with independent or dependent increments?

e For ¢ < 1, is the seriesy 2 ; |cov(|Xgl|?, | Xn|?)| summable or
not summmable?
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e Statistical inference

Robinson and Zaffaroni (2006) studied parametric estimation for
ARCH(c0) processes that include the FIGARCH(0,d,0) process
under Assumption (6]) and for d > 1/2.
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