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Nonparametric Bayesian inference I

Observations X n taking values in sample space X n. Model
{Pn

θ : θ ∈ Θn}. All Pn
θ dominated, density pn

θ .
Put a prior distribution Πn on the parameter θ and base the
inference on the posterior distribution

Πn(B |X n) =

∫
B pn

θ (X n) Πn(dθ)∫
Θn pn

θ (X n) Πn(dθ)
.

Frequentist questions:

• Does the posterior contract around the true parameter θ0 as
n →∞?

• What is the rate of contraction?



Nonparametric Bayesian inference II

Infinite-dimensional models: parameter θ is a function (density,
regression function, drift function, . . . ), parameter space Θ is a
function space.

View prior Πn as the law of a stochastic process with sample paths
in Θ.

Attractive stochastic process priors: use Gaussian processes as
building blocks.

• flexible class

• relatively tractable mathematically



Example: fixed design regression I

Simple example: data (ti ,Yi ) satisfying Yi = f (ti ) + εi for an
unknown, continuous regression function f , εi independent N(0, 1).

Simulated data:
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Example: fixed design regression II

• Prior on C [0, 10]: f ∼ Brownian motion (started in a random
point).

Example realizations of prior:
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Example: fixed design regression III

• Compute posterior: f ∼ “some Gaussian random process”
• Compute posterior mean:
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Example: Density estimation I

Let X1,X2, . . . ,Xn be a sample from a distribution with positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a Brownian motion Wt and let Π be
the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

(Leonard (1978), Lenk (1988), Tokdar and Ghosh (2007), . . . )

At what rate does the posterior based on this prior converge to the
true density θ0?



Example: Density estimation II

Ghosal, Ghosh and Van der Vaart (2000):

If there exist Θn ⊂ Θ and positive numbers εn such that nε2
n →∞

and, for some c > 0,

sup
ε>εn

log N(ε, Θn, h) ≤ nε2
n, (entropy)

Π(Θ\Θn) ≤ e−(c+4)nε2
n , (remaining mass)

Π(Bn(θ0, εn)) ≥ e−cnε2
n , (prior mass)

then for M large enough

Eθ0Π(θ : h(θ, θ0) > Mεn |X1, . . . ,Xn) → 0.



Example: Density estimation III

Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler,
. . . ) on the densities

pw (t) =
ewt∫ 1

0 ewt dt

to the uniform distance on the functions w .

Step 2: Solve the corresponding problem for Brownian motion.
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Example: Density estimation IV

To get a rate εn (with nε2
n →∞), need to show that there exist

Cn ⊂ C [0, 1] such that, for some c > 0,

sup
ε>εn

log N(ε, Cn, ‖ · ‖∞) ≤ nε2
n,

P(W 6∈ Cn) ≤ e−(c+4)nε2
n ,

P(‖W − w0‖∞ < εn) ≥ e−cnε2
n .

(small ball probability)

Here w0 = log θ0.



Example: Density estimation V

(Bibliography on small ball probabilities: Lifshits (2007), > 200
papers.)

Brownian motion:

P(‖W − w0‖∞ < ε) ≤ P(‖W ‖∞ < ε) ∼ e−(1/ε)2 .

Hence, can not do better than εn ∼ Cn−1/4.

Question: under which conditions on w0 do we achieve the rate
n−1/4?



Example: Density estimation VI

Reproducing kernel Hilbert space (RKHS):

H = {h =

∫
h′ : h′ ∈ L2}, ‖h‖H = ‖h′‖L2 .

Non-centered vs. centered small ball probability (Cameron-Martin):

P(‖W − h‖∞ < ε) ≥ e−
1
2‖h‖

2
HP(‖W ‖∞ < ε).

Prior mass condition:
ϕw0(εn) ≤ nε2

n,

where

ϕw0(ε) = inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H − log P(‖W ‖∞ < ε).

(concentration function)



Example: Density estimation VII

Lemma.
If w0 ∈ Cα[0, 1], α > 0, then

inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H . ε−(2−2α)/α.

Hence for w0 ∈ Cα[0, 1] the prior mass condition ϕw0(εn) ≤ nε2
n

holds for

εn ∼

{
n−1/4 if α ≥ 1/2

n−α/2 if α ≤ 1/2.

How about the entropy and remaining mass conditions?

They are automatically fulfilled!
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Example: Density estimation VIII

Let X1,X2, . . . ,Xn be a sample from a density θ on [0, 1].

Prior distribution on θ: law of

t 7→ eWt∫ 1
0 eWt dt

,

with W a Brownian motion

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then the posterior contracts around θ0

at the rate

εn ∼

{
n−1/4 if α ≥ 1/2

n−α/2 if α ≤ 1/2.



Concentration of Gaussian measures I

Abstract formulation:

Let B be a separable Banach space with norm ‖ · ‖. Let W be a
Borel measurable random element in B, centered and Gaussian (i.e.
b∗(W ) is Gaussian and centered for b∗ ∈ B∗).

Reproducing kernel Hilbert space (RKHS) H associated with W :
closure of

{EWb∗(W ) : b∗ ∈ B∗}

with respect to the inner product

〈EWb∗1(W ), EWb∗2(W )〉H = Eb∗1(W )b∗2(W ).

Always H ⊂ B.



Concentration of Gaussian measures II

Support of W : smallest closed subset B0 of B such that
P(W ∈ B0) = 1.

Fact:

The support of W is the closure of H in B.

(Consequence of Hahn-Banach.)

Much more precise: Borell’s inequality.



Concentration of Gaussian measures III

B1, H1: unit balls in B, H. For w0 ∈ B,

ϕw0(ε) = inf
h∈H:‖h−w0‖<ε

‖h‖2
H − log P(‖W ‖ < ε).

Borell (1975):

P(W 6∈ εB1 + MH1) ≤ 1− Φ(Φ−1(e−ϕ0(ε)) + M).

Kuelbs and Li (1973):

H1 is compact in B, metric entropy related to small ball
probability ϕ0(ε).



Concentration of Gaussian measures IV

Theorem.
Let w0 be in the support of W and εn > 0 such that nε2

n →∞ and

ϕw0(εn) ≤ nε2
n.

Then for all C > 1 there exist measurable Bn ⊂ B such that

log N(3εn,Bn, ‖ · ‖) ≤ 6Cnε2
n,

P(W 6∈ Bn) ≤ e−Cnε2
n ,

P(‖W − w0‖ < 2εn) ≥ e−nε2
n .



Consequences of the general result

• Can deal with several statistical settings: density estimation,
regression, signal in white noise, classification, . . .

• Can exhibit optimal priors for smoothness classes. Basic idea:
if the true function is α-smooth, the sample paths of the
Gaussian prior should be α-smooth as well.

• Sheds some light on how we might treat more general priors,
e.g. rescaled Gaussian process priors or conditionally Gaussian
priors.



Optimal priors for smoothness classes I

Let X1,X2, . . . ,Xn be a sample from a distribution with a positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a centered Gaussian process Wt and
let Π be the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

Suppose that log θ0 ∈ Cα[0, 1] for α > 0.

Which Gaussian process W leads to the optimal rate n−α/(1+2α)?



Optimal priors for smoothness classes II

Candidate: Riemann-Liouville process

Wt =

∫ t

0
(t − s)α−1/2 dBs .

For α− 1/2 integer: W is (α− 1/2)-fold repeated integral of B.
For other α: use fractional calculus.

Intuition: good model for α-smooth functions.



Optimal priors for smoothness classes III

Known results for the RL-process:

Li and Linde (1998):

− log P(‖W ‖∞ < ε) ∼ ε−1/α

RKHS is I
α+1/2
0+ (L2),

‖Iα+1/2
0+ f ‖H =

‖f ‖L2

Γ(α + 1/2)
.



Optimal priors for smoothness classes IV

Modified RL-process with parameter α > 0:

Wt =

α+1∑
k=0

Zktk +

∫ t

0
(t − s)α−1/2 dBs .

Theorem.
The support of the process W is C [0, 1]. For w ∈ Cα[0, 1] we have
ϕw (ε) = O(ε−1/α) as ε → 0.



Optimal priors for smoothness classes V

Let X1,X2, . . . ,Xn be a sample from a distribution with a positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a modified RL-process Wt with
parameter α > 0 and let Π be the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then, relative to the Hellinger metric,
the posterior concentrates around θ0 at the rate n−α/(1+2α).



Rescaled Gaussian process priors I

Idea: instead of a different Gaussian process prior for every
smoothness level, use a single Gaussian process and rescale it
appropriately.

Instead of
t 7→ Wt

use
t 7→ Wt/cn

for scaling constants cn: roughening or smoothing.



Rescaled Gaussian process priors II

Base process: e.g. the centered Gaussian process W with
covariance

EWsWt = e−(t−s)2

(squared exponential process).

Intuition: too smooth as prior on α-smooth functions, should use
rescaling constants cn → 0.



Rescaled Gaussian process priors III
Let X1,X2, . . . ,Xn be a sample from a density θ on [0, 1].

Prior distribution on θ: law of

t 7→ eWt/cn∫ 1
0 eWt/cn dt

,

with W the squared exponential process and, for α > 0,

cn =
( log2 n

n

) 1
1+2α

.

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then the posterior contracts around θ0

at the rate

εn ∼
( n

log2 n

)− α
1+2α

.



Adaptive density estimation
Let X1,X2, . . . ,Xn be a sample from a density θ on [0, 1].

Prior distribution Π on θ:

• Let W be a centered Gaussian process with
EWsWt = e−(t−s)2 .

• Let A be [1,∞)-valued, independent of W , density

g(a) ∼ C1e
C2a log2 a for a →∞.

• Define Π to be the law of the random density

t 7→ eWAt∫ 1
0 eWAt dt

,

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then the posterior contracts around θ0

at the rate
εn ∼ (n/ log2 n)

− α
1+2α .



Thanks!

Based on joint work with Aad van der Vaart:

• Rates of contraction of posterior distributions based on
Gaussian process priors. To appear in Annals of Statistics.

• Reproducing kernel Hilbert spaces of Gaussian priors. To
appear in IMS volume in honour of J.K. Ghosh.

• Bayesian inference with rescaled Gaussian process priors.
Electronic Journal of Statistics, 2007.

• Adaptive Bayesian estimation with rescaled Gaussian process
priors. In preparation.

See: www.math.vu.nl/˜harry


