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Nonparametric Bayesian inference |

Observations X" taking values in sample space X"”. Model
{Pj : 6 € ©"}. All P} dominated, density p.

Put a prior distribution 17 on the parameter 6 and base the
inference on the posterior distribution

g g s P 7(0)
B = o wxm ()

Frequentist questions:

e Does the posterior contract around the true parameter 6 as
n— oo?

e What is the rate of contraction?



Nonparametric Bayesian inference Il

Infinite-dimensional models: parameter 6 is a function (density,
regression function, drift function, ...), parameter space © is a
function space.

View prior 1" as the law of a stochastic process with sample paths
in ©.

Attractive stochastic process priors: use Gaussian processes as
building blocks.

e flexible class

e relatively tractable mathematically



Example: fixed design regression |

Simple example: data (t;, Y;) satisfying Y; = f(t;) + &; for an
unknown, continuous regression function f, ¢; independent N(0,1).

Simulated data:




Example: fixed design regression Il

e Prior on CJ[0,10]: f ~ Brownian motion (started in a random
point).

Example realizations of prior:
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Example: fixed design regression Ill

e Compute posterior: f ~ “some Gaussian random process”
e Compute posterior mean:

-2
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Example: Density estimation |

Let X1, X5,..., X, be a sample from a distribution with positive,
continuous density 6 on [0, 1].

Prior distribution on 6: take a Brownian motion W; and let I1 be
the law of the random density

eWt

t— YV
Jo eV dt

(Leonard (1978), Lenk (1988), Tokdar and Ghosh (2007), ...)

At what rate does the posterior based on this prior converge to the
true density 67



Example: Density estimation Il

Ghosal, Ghosh and Van der Vaart (2000):

If there exist ©, C © and positive numbers ¢, such that ne2 — oo
and, for some ¢ > 0,

sup log N(g,©,, h) < ne?, (entropy)
£>€n

Mne\e,) < e~ (ctd)net (remaining mass)
M(Bn(0o,en)) > e, (prior mass)

then for M large enough

Eg,N(0 : h(6,00) > Mz, | X, .., Xn) — 0.



Example: Density estimation Il

Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler,
..) on the densities

et

pul(t) = ———
®) [ ewe dt

to the uniform distance on the functions w.



Example: Density estimation Il

Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler,
..) on the densities

et

pul(t) = ———
®) [ ewe dt

to the uniform distance on the functions w.

Step 2: Solve the corresponding problem for Brownian motion.



Example: Density estimation |V

To get a rate &, (with ne2 — o), need to show that there exist
C, C C[0,1] such that, for some ¢ > 0,

sup log N(e, Gy, || - [|oo) < ne%,

£>€n

]P)(W € Cn) < e—(c—|-4)ne€?,7
P(|W — wollos < £5) > &0
(small ball probability)

Here wy = log 6.



Example: Density estimation V

(Bibliography on small ball probabilities: Lifshits (2007), > 200
papers.)

Brownian motion:
P(|W — wollo < €) < P(||W||oo < &) ~ e 1/,

Hence, can not do better than &, ~ Cn~1/4.

Question: under which conditions on wy do we achieve the rate
—1/47
n /



Example: Density estimation VI

Reproducing kernel Hilbert space (RKHS):
H={h= /h’ L H e 12, Ihllw = ||H]| 2-
Non-centered vs. centered small ball probability (Cameron-Martin):

1
P(|W — hljoo < &) > e 2IMEP(| Wl < &).

Prior mass condition:
2
Pwo(€n) < ney,

where

Pw (€) 1AE — log P(IIW | < €)-

= inf
heH: || h—wp |0 <€

(concentration function)



Example: Density estimation VII

Lemma.
If wo € C*[0,1], @ > 0, then

inf A2 < e (372a)/e
heH: || h—wpl| oo <€

Hence for wy € C[0, 1] the prior mass condition o, (c,) < ne?

holds for
n~V% if a>1/2
€n~
n—*? if a <1/2.

How about the entropy and remaining mass conditions?



Example: Density estimation VII

Lemma.
If wo € C*[0,1], @ > 0, then

inf A2 < e (372a)/e
heH: || h—wpl| oo <€

Hence for wy € C[0, 1] the prior mass condition o, (c,) < ne?

holds for
n~V% if a>1/2
€n~
n—*? if a <1/2.

How about the entropy and remaining mass conditions?

They are automatically fulfilled!



Example: Density estimation VIII

Let Xy, X2, ..., X, be a sample from a density 6 on [0, 1].

Prior distribution on 6: law of

eW

b, c
fol eW: dt’

with W a Brownian motion

Theorem.
Suppose log 6y € C*[0,1]. Then the posterior contracts around 6

at the rate
n~V% if a>1/2
E ~
5 n=*? if a <1/2.



Concentration of Gaussian measures |

Abstract formulation:

Let B be a separable Banach space with norm || - ||. Let W be a
Borel measurable random element in B, centered and Gaussian (i.e.
b*(W) is Gaussian and centered for b* € B*).

Reproducing kernel Hilbert space (RKHS) H associated with W:
closure of
{EWbL*(W) : b* € B*}

with respect to the inner product
(EWb; (W), EWb3(W))y = Ebp (W)bs(W).

Always H C B.



Concentration of Gaussian measures ||

Support of W: smallest closed subset By of B such that
P(W € Bp) = 1.

Fact:
The support of W is the closure of H in B.
(Consequence of Hahn-Banach.)

Much more precise: Borell's inequality.



Concentration of Gaussian measures Il|

B1, Hi: unit balls in B, H. For wy € B,

e (€) = inf hl|% — log P(|W]| < &).
Pw(€) heH:||Ihn—w0||<sH | — log P(| W] < ¢)

Borell (1975):

P(W ¢ eBy + MH;) < 1 — &(d~ (e #E)) + Mm).

Kuelbs and Li (1973):

H; is compact in B, metric entropy related to small ball
probability ¢o(e).



Concentration of Gaussian measures |V

Theorem.
Let wp be in the support of W and &, > 0 such that ne2 — oo and

Puo(en) < nes.
Then for all C > 1 there exist measurable B,, C B such that

log N(3en, Bn, || - ||) < 6Cne,
P(W & B,) < e Cren,
P(||W — wol| < 2e,) > e~ "n,



Consequences of the general result

e Can deal with several statistical settings: density estimation,
regression, signal in white noise, classification, ...

e Can exhibit optimal priors for smoothness classes. Basic idea:
if the true function is a-smooth, the sample paths of the
Gaussian prior should be a-smooth as well.

e Sheds some light on how we might treat more general priors,
e.g. rescaled Gaussian process priors or conditionally Gaussian
priors.



Optimal priors for smoothness classes |

Let X1, X5,..., X, be a sample from a distribution with a positive,
continuous density 6 on [0, 1].

Prior distribution on #: take a centered Gaussian process W; and
let I'T be the law of the random density
et

b=
Jo eV dt

Suppose that log 6y € C*[0, 1] for > 0.

Which Gaussian process W leads to the optimal rate n~/(1+24)7?



Optimal priors for smoothness classes Il

Candidate: Riemann-Liouville process
t
W, :/ (t—s)* 12 dB.
0

For « — 1/2 integer: W is (aw — 1/2)-fold repeated integral of B.
For other a:: use fractional calculus.

Intuition: good model for a-smooth functions.



Optimal priors for smoothness classes IlI

Known results for the RL-process:
Li and Linde (1998):

—log P(||W/|oo < &) ~ e~/

RKHS is [572(12),

[l

2 f ||y = I



Optimal priors for smoothness classes |V

Modified RL-process with parameter a: > 0:

a+l ¢
We =" Zt* +/ (t—s)* 12 dB.
k=0 0

Theorem.
The support of the process W is C[0,1]. For w € C%[0, 1] we have

ow(e) = 0(e™Y*) as e — 0.



Optimal priors for smoothness classes V

Let Xi, Xa,..., X, be a sample from a distribution with a positive,
continuous density 6 on [0, 1].

Prior distribution on #: take a modified RL-process W; with
parameter a > 0 and let 1 be the law of the random density

eWt

fol eWe dt

t+—

Theorem.
Suppose log 6y € C[0,1]. Then, relative to the Hellinger metric,
the posterior concentrates around 6 at the rate n~/(1+2a),



Rescaled Gaussian process priors |

Idea: instead of a different Gaussian process prior for every
smoothness level, use a single Gaussian process and rescale it
appropriately.

Instead of
t— Wt

use
t— Wt/cn

for scaling constants ¢,: roughening or smoothing.



Rescaled Gaussian process priors |l

Base process: e.g. the centered Gaussian process W with
covariance
2
EW, W, = e~ (t79)

(squared exponential process).

Intuition: too smooth as prior on a-smooth functions, should use
rescaling constants ¢, — 0.



Rescaled Gaussian process priors |l
Let X1, Xa, ..., X, be a sample from a density 6 on [0, 1].

Prior distribution on 0: law of

T
) eWesen it

with W the squared exponential process and, for a > 0,

2 1
log” n\ 52a
Ch = .
n

Theorem.
Suppose log 6y € C[0,1]. Then the posterior contracts around 6y

at the rate N
c ( n >_ 1+2a
! log? n '




Adaptive density estimation
Let X1, Xa, ..., X, be a sample from a density 6 on [0, 1].

Prior distribution I1 on 6:
e Let W be a centered Gaussian process with
EW, W, = e~ (t=5),
e Let A be [1,00)-valued, independent of W, density
g(a) ~ Cre@a08’ 2 for 5 .
e Define I1 to be the law of the random density

e WAt

trs
Jo eWa dt

Theorem.
Suppose log 6y € C[0,1]. Then the posterior contracts around 6y
at the rate o

en ~ (n/log®n) TH2a.



Thanks!

Based on joint work with Aad van der Vaart:

See:

Rates of contraction of posterior distributions based on
Gaussian process priors. To appear in Annals of Statistics.

Reproducing kernel Hilbert spaces of Gaussian priors. To
appear in IMS volume in honour of J.K. Ghosh.

Bayesian inference with rescaled Gaussian process priors.
Electronic Journal of Statistics, 2007.

Adaptive Bayesian estimation with rescaled Gaussian process
priors. In preparation.

www.math.vu.nl/~harry



