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Hedging robustness of Black & Scholes model
Basic observation

Assume that X is a continuous process defined on some probability
space (Ω,F , P) with finite quadratic variation [X , X ]:

[X , X ]t = lim
|π|→0

∑
tk∈π

(
Xtk − Xtk−1

)2
,

where π = {tk : 0 = t0 < t1 < · · · < tn = t} is a sequence of
partitions of the interval [0, t], |π| = max{tk − tk−1 : tk ∈ π}, and
the limit is either in probability or P – almost surely. The process
[X , X ] is continuous and increasing.
The following famous observation belongs to Hans Föllmer:



Hedging robustness of Black & Scholes model
Basic observation

Assume that X is a continuous process defined on some probability
space (Ω,F , P) with finite quadratic variation [X , X ]:

[X , X ]t = lim
|π|→0

∑
tk∈π

(
Xtk − Xtk−1

)2
,

where π = {tk : 0 = t0 < t1 < · · · < tn = t} is a sequence of
partitions of the interval [0, t], |π| = max{tk − tk−1 : tk ∈ π}, and
the limit is either in probability or P – almost surely. The process
[X , X ] is continuous and increasing.
The following famous observation belongs to Hans Föllmer:



Hedging robustness of Black & Scholes model
Basic observation, II

If F ∈ C1,2(R+,R), the we have the Itô formula

F (t, Xt) = F (0, X0) +

∫ t

0
Ft(s, Xs)ds (1)

+

∫ t

0
Fx(s,Xs)dXs +

1

2

∫ t

0
Fxx(s, Xs)d [X ,X ]s .

If the quadratic variation exists as almost sure limit, then the
stochastic integral

∫ t
0 Fx(s, Xs)dXs in (1) can be interpreted as

pathwise Riemann-Stieltjes integral.
Shoenmakers and Kloeden used this observation to show that
hedging of European type of options is the same in all pricing
models, where the quadratic variation of the stock price has the
same form as a functional of the stock price as in the classical
Black & Scholes model.
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Hedging robustness of Black & Scholes model
Model classes

In [BSV] we consider classes of pricing models, where the
continuous stock price S has the following quadratic variation:

d [S , S ]t = σ2(St)dt, (2)

where σ : R→ R is a continuously differentiable function of linear
growth.
Typical examples of this kind of stock price models are the classical
Black & Scholes model, where the stock price S̃ is given by

S̃t = s0e
σWt− 1

2
σ2t ,

and so-called mixed Brownian - fractional Brownian motion pricing
models, where the stock price S is given by

St = s0e
Xt− 1

2
σ2t ,

here Xt = σWt + ηBH
t , BH is a fractional Brownian motion with

Hurst index H > 1
2 , independent of W , and η is a constant.
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Hedging robustness of Black & Scholes model
Model classes, II

It is known that we have

d [S̃ , S̃ ]t = σ2S̃2
t dt and d [S , S ]t = σ2S2

t dt,

and for both price processes the bracket has the functional form of
(2), and in the terminology of [BSV] both price processes belong
to the same model class.
We have shown that within a fixed model class the hedging has the
same functional form for a big class of options, which includes
European options, and path dependent options like lookback
options and Asian options.
We want to give an estimator for the quadratic variation of the
process X , which can be a semimartingale or a
non-semimartingale, depending weather H > 3

4 or H ∈ (1
2 , 3

4 ].
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Spectral characterization of the bracket
The process X is a semimartingale

In [DS] Dzhaparidze and Spreij gave another estimator for the
bracket [X , X ]. Let FX be a filtration of X .
Let τ be a stopping time and λ ∈ R. Define the periodogram
Iτ (X ; λ) of X by

Iτ (X ; λ) := |
∫ τ

0
e iλsdXs |2;

here i =
√−1.

Let L > 0 and let ξ be a symmetric random variable with a density
gξ and real characteristic function ϕξ, and ξ

w FX . Define the
randomized periodogram by

Eξ Iτ (X ; Lξ) =

∫

R
Iτ (X ; Ly) gξ(y)dy . (3)
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Spectral characterization of the bracket
The process X is a semimartingale

If the stopping time τ is finite and the characteristic function ϕξ

has bounded variation , then Dzhaparidze and Spreij have shown
that we have the following characterization of the bracket as
L →∞

Eξ Iτ (X ; Lξ)
P→ [X ,X ]τ . (4)

If the process X is a continuous Gaussian martingale and the
stopping time τ is a constant T , τ = T , then Dzhaparidze and
Spreij can drop the assumption that the characteristic function ϕξ

has a bounded variation.
We prove that if the process X is a mixed Brownian - fractional
Brownian motion, T > 0 is a fixed time and the symmetric random
variable ξ has finite second moment, then the randomized
periodoram of X also satisfies (4).
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Estimator for the bracket
Preparations

Assume that X is a mixed Brownian - fractional Brownian motion
and λ ∈ R. Define the process Y by

Yt =

∫ t

0
e iλsdXs for t ≤ T .

Then

I [Y , Y ]t = t, where Y t is the complex conjugate of Yt .

I Itô formula (1) gives

IT (X ; λ) = |YT |2 = T + 2Re

∫ T

0

∫ t

0
e iλ(t−s)dXsdXt .
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Estimator for the bracket
Preparations, II

Define the randomized periodogram by

Eξ IT (X ; Lξ) = T + 2Re

∫

R

[∫ T

0

∫ t

0
e iLy(t−s)dXsdXt

]
gξ(y)dy ,

where ξ is a symmetric random variable independent of W ,BH .
As a first step of the proof we must prove a Fubini theorem which
allows us to compute

∫

R

[∫ T

0

∫ t

0
e iLy(t−s)dXsdXt

]
gξ(y)dy

=

∫ T

0

∫ t

0
ϕξ(L(t − s))dXsdXt ,

where ϕξ is the characteristic function of ξ.
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Estimator for the bracket
Preparations, III

Note that we have the following limit

lim
L→∞

ϕξ(L(t − s) = δ{0}(t − s).

After we have the Fubini theorem we use this limit to prove that

P− lim
L→∞

∫ T

0

∫ t

0
ϕξ(L(t − s))dXsdXt = 0. (5)

To prove the Fubini theorem and also the limit (5) we decompose
X as X = W + BH .
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Fubini theorem

Recall first the p- variation of X : the process X has finite p
variation, p > 1 if

sup
tk∈π

∑
tk

|Xtk − Xtk−1 |p < ∞ P -a.s.

Fubini Theorem Assume that Y y is a parametric family of
processes having finite p- variation, dominated independently of
the parameter y , and X is a processes with finite q variation with
1
p + 1

q > 1, ∫

R
E |Y y

t |g(y)dy < ∞.

Then ∫

R

∫ T

0
Y y

s dXsg(y)dy =

∫ T

0

∫

R
Y y

s g(y)dydXs .



Fubini theorem
On the proof

Some comments on the proof of the Fubini theorem.

I The above theorem is a small improvement of corresponding
theorem by Krvavych and Mishura (2001), and proved
similarly.

I The proof is based on Young inequality, which allows to
discretize both sides of the above inequality. For the finite
discrete time sums the equality is true, and then one can pass
to the limit.

When we integrate the iterated integrals with respect to the
parameter y , we have four integrals: In the case of dWsdWt we
use standard stochastic Fubini theorem, and interchange the order
of the first integral and the integral over R; in the other three
cases we can use the above theorem to justify the changing of the
order of the integrals.
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Fubini theorem
On the proof, II

To finish the proof of the identity

∫

R

[∫ T

0

∫ t

0
e iLy(t−s)dXsdXt

]
gξ(y)dy

=

∫ T

0

∫ t

0
ϕξ(L(t − s))dXsdXt ,

we use standard Fubini theorem for the four Wiener integrals, and
combine the terms.
The last step is to show that

∫ T

0

∫ t

0
ϕξ(L(t − s))dXsdXt → 0

as L →∞. We consider again four different integrals.
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The periodogram limit theorem
Last part of the proof

I To justify the limit for the integral∫ T
0

∫ t
0 ϕξ(L(t − s))dWsdWt one can use Itô isometry.

I To show that the integral
∫ T
0

∫ t
0 ϕξ(L(t − s))dBH

s dWt → 0
one can use the independence of BH and W . The same
reasoning applies to the integral

”
where we change the order

of BH and W .

I Finally, to show that the integral∫ T
0

∫ t
0 ϕξ(L(t − s))dBH

s dBH
t → 0, we proceed indirectly. We

use the the connection of Riemann-Stieltjes integrals to
divergence integrals, estimate the moments of divergence
integrals as well as the correction term to verify this last limit.
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Discussion

I The talk is based on manuscript [AV], which means that we
are still working with several details.

I Can one allow more general martingales M instead of W ?
Apparently, the problem will be in the verification of the
Fubini theorem.

I Can one drop the independence of W and BH? Probably yes,
but the last part of the proof will be more analytical.

I THANK YOU FOR THE ATTENTION!
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