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Circulant random matrices

Let (Xn) be a sequence of random variables and consider the
symmetric circulant random matrix

An =
1√
n


X1 X2 X3 · · · Xn−1 Xn
X2 X3 X4 · · · Xn X1
X3 X4 X5 · · · X1 X2
· · · · · · · · · · · · · · · · · ·
Xn X1 X2 · · · Xn−2 Xn−1

 .

Goal. Asymptotic behavior of the empirical spectral distribution

Fn(x) =
1
n

n−1∑
k=0

1{λk 6x}.
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Trigonometric weighted sums

We shall make use of

rn =

[
n − 1

2

]
and of the trigonometric weighted sums

Sn,k =
1

√
n

n∑
t=1

Xt cos
(

2πkt
n

)
,

Tn,k =
1

√
n

n∑
t=1

Xt sin
(

2πkt
n

)
.
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Eigenvalues

Lemma (Bose-Mitra)
The eigenvalues of An are given by

λ0 =
1√
n

n∑
t=1

Xt ,

if n is even
λn/2 =

1√
n

n∑
t=1

(−1)t−1Xt ,

and for all 1 6 k 6 rn

λk = −λn−k =
√

S2
n,k + T 2

n,k .
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Theorem (Bose-Mitra, 2002)

Assume that (Xn) is a sequence of iid random variables such
that E[X1] = 0, E[X 2

1 ] = 1, E[|X1|3] < ∞. Then, for each x ∈ R,

lim
n→∞

E[(Fn(x) − F (x))2] = 0

where F is given by

F (x) =
1
2

 exp(−x2) if x 6 0,

2− exp(−x2) if x > 0.

Remark. F is the symmetric Rayleigh CDF.
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Empirical periodogram

Let (Xn) be a sequence of random variables and consider the
empirical periodogram defined, for all λ ∈ [−π, π[, by

In(λ) =
1
n

∣∣∣∣∣
n∑

t=1

e−itλXt

∣∣∣∣∣
2

.

At the Fourier frequencies λk =
2πk

n
, we clearly have

In(λk ) = S2
n,k + T 2

n,k .

Goal. Asymptotic behavior of the empirical distribution

Fn(x) =
1
rn

rn∑
k=1

1{In(λk )6x}.
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Theorem (Kokoszka-Mikosch, 2000)

Assume that (Xn) is a sequence of iid random variables such
that E[X1] = 0 and E[X 2

1 ] = 1. Then, for each x ∈ R,

lim
n→∞

E[(Fn(x) − F (x))2] = 0

where F is the exponential CDF.

Remark. (Fn) also converges uniformly in probability to F .
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Almost sure central limit theorem

Let (Xn) be a sequence of iid random variables such that
E[Xn] = 0 and E(X 2

n ) = 1 and denote

Sn =
1√
n

n∑
t=1

Xt .

Theorem (Lacey-Phillip, 1990)

The sequence (Xn) satisfies an ASCLT which means that for
any x ∈ R

lim
n→∞

1
log n

n∑
t=1

1
t

1{St6x} = Φ(x) a.s.

where Φ stands for the standard normal CDF.
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Assumptions

Let (U(n)) be a family of real rectangular rn × n matrices with
1 6 rn 6 n, satisfying for some constants C, δ > 0

(A1) max
16k6rn, 16t6n

|u(n)
k ,t | 6

C
(log(1 + rn))1+δ

,

(A2) max
16k , l6rn

∣∣∣∣∣
n∑

t=1

u(n)
k ,t u(n)

l,t − δk ,l

∣∣∣∣∣ 6
C

(log(1 + rn))1+δ
.

Let (V(n)) be such a family and assume that (U(n), V(n)) satisfies

(A3) max
16k , l6rn

∣∣∣∣∣
n∑

t=1

u(n)
k ,t v (n)

l,t

∣∣∣∣∣ 6
C

(log(1 + rn))1+δ
.
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Trigonometric weights

(A1) to (A3) are fulfilled in many situations. For example, if

rn 6

[
n − 1

2

]
and for the trigonometric weights

u(n)
k ,t =

√
2
n

cos
(

2πkt
n

)
,

v (n)
k ,t =

√
2
n

sin
(

2πkt
n

)
.

We shall make use of the sequences of weighted sums

Sn,k =
n∑

t=1

u(n)
k ,t Xt and Tn,k =

n∑
t=1

v (n)
k ,t Xt .
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Uniform strong law

Theorem (Bercu-Bryc, 2007)

Assume that (Xn) is a sequence of independent random
variables such that E[Xn] = 0, E[X 2

n ] = 1, sup E[|Xn|3] < ∞.
If (A1) and (A2) hold, we have

lim
n→∞

sup
x∈R

∣∣∣∣∣ 1
rn

rn∑
k=1

1{Sn,k 6x} − Φ(x)

∣∣∣∣∣ = 0 a.s.

In addition, under (A3), we also have for all (x , y)∈R2,

lim
n→∞

1
rn

rn∑
k=1

1{Sn,k 6x,Tn,k 6y} = Φ(x)Φ(y) a.s.
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Sketch of proof

For all s, t ∈ R, let

Φn(s, t) =
1
rn

rn∑
k=1

exp(isSn,k + itTn,k ).

Lemma (Bercu-Bryc, 2007)

Under (A1) to (A3), one can find some constant C(s, t) > 0
such that for n large enough

E
[
|Φn(s, t) − Φ(s, t)|2

]
6

C(s, t)
(log(1 + rn))1+δ

where Φ(s, t) = exp(−(s2 + t2)/2).
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Lemma (Lyons, 1988)

Let (Yn,k ) be a sequence of uniformly bounded C-valued
random variables and denote

Zn =
1
rn

rn∑
k=1

Yn,k .

Assume that for some constant C > 0,

E[|Zn|2] 6
C

(log(1 + rn))1+δ
.

Then, (Zn) converges to zero a.s.

By the two lemmas, we have for all s, t ∈ R,

lim
n→∞

Φn(s, t) = Φ(s, t) a.s.
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Corollary
The result of Bose and Mitra on empirical spectral distributions
of symmetric circulant random matrices holds with
probability one

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| = 0 a.s.

Corollary
The result of Kokoszka and Mikosch on empirical distributions
of periodograms at Fourier frequencies holds with probability
one if sup E[|Xn|3] < ∞

lim
n→∞

sup
x>0

|Fn(x)− (1− exp(−x))| = 0 a.s.

B. Bercu and W. Bryc Empirical measures of weighted sums 17 / 24



Motivation
Main results

The sequence of weights
Uniform strong law
Central limit theorem
Large deviation principle

Sketch of proof

The empirical measure

νn =
1
rn

rn∑
k=1

δ(Sn,k ,Tn,k ) ⇒ ν a.s.

where ν stands for the product of two independent normal
probability measure. Let h be the continuous mapping

h(x , y) =
1
2
(x2 + y2).

Fn is the CDF of µn = νn(h). Consequently, as µn ⇒ µ a.s.
where µ = ν(h) is the exponential probability measure

lim
n→∞

Fn(x) = 1 − exp(−x) a.s.
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In all the sequel, we only deal with trigonometric weights. We
shall make use of Sakhanenko’s strong approximation lemma.

Definition. A sequence (Xn) of independent random variables
satisfies Sakhanenko’s condition if E[Xn] = 0, E[X 2

n ] = 1 and for
some constant a > 0,

(S) sup
n>1

a E[|Xn|3 exp(a|Xn|)] 6 1.

Remark. Sakhanenko’s condition is stronger than Cramér’s
condition as it implies for all |t | 6 a/3

sup
n>1

E[exp(tXn)] 6 exp(t2).
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A keystone lemma

Lemma (Sakhanenko, 1984)

Assume that (Xn) is a sequence of independent random
variables satisfying (S). Then, one can construct a sequence
(Yn) of iid N (0, 1) random variables such that, if

Sn =
n∑

t=1

Xt and Tn =
n∑

t=1

Yt

then, for some constant c > 0,

E
[
exp

(
ac max

16t6n
|St − Tt |

)]
6 1 + na.
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Theorem (Bercu-Bryc, 2007)

Assume that (Xn) is a sequence of independent random
variables satisfying (S). Suppose that (log n)2r3

n =o(n).
Then, for all x ∈ R,

1
√

rn

rn∑
k=1

(1{Sn,k 6x} − Φ(x))
L−→ N (0, Φ(x)(1 − Φ(x))) .

In addition, we also have

√
rn sup

x∈R

∣∣∣∣∣ 1
rn

rn∑
k=1

1{Sn,k 6x} − Φ(x)

∣∣∣∣∣ L−→
n→+∞

K

where K stands for the Kolmogorov-Smirnov distribution.
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Remark. K is the distribution of the supremum of the absolute
value of the Brownian bridge. For all x > 0,

P(K 6 x) = 1 + 2
∞∑

k=1

(−1)k exp(−2k2x2).

Remark. One can observe that the CLT also holds if (S) is
replaced by the assumption that for some p > 0

sup
n>1

E[|Xn|2+p] < ∞,

as soon as

r3
n = o(np/(2+p)).
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Relative entropy

We are interested in the large deviation principle for the
random empirical measure

µn =
1
rn

rn∑
k=1

δSn,k .

The relative entropy with respect to the standard normal law
with density φ is given, for all ν ∈M1(R), by

I(ν) =

∫
R

log
f (x)

φ(x)
f (x)dx

if ν is absolutely continuous with density f and the integral
exists and I(ν) = +∞ otherwise.
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Theorem (Bercu-Bryc, 2007)

Assume that (Xn) is a sequence of independent random
variables satisfying (S). Suppose that log n=o(rn), r4

n =o(n).
Then, (µn) satisfies an LDP with speed (rn) and good rate
function I,

Upper bound: for any closed set F ⊂M1(R),

lim sup
n→∞

1
rn

log P(µn ∈ F ) 6 − inf
ν∈F

I(ν).

Lower bound: for any open set G ⊂M1(R),

lim inf
n→∞

1
rn

log P(µn ∈ G) > − inf
ν∈G

I(ν).
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