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Independence

Here, the main question is how to weaken the relation

P(A ∩ B) = P(A)P(B) ?

Independence of A ∈ σ(P) and B ∈ σ(F ) is also written as:

Cov(f (P), g(F )) = 0, ∀f , g , ‖f ‖∞, ‖g‖∞ ≤ 1

(The variables P and F stand for Past and Future)
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Mixing

α(σ(P), σ(F )) = sup
‖f ‖∞,‖g‖∞≤1

|Cov(f (P), g(F ))|

X = (Xt)t∈Z : P = (Xs1 , . . . ,Xsu ), F = (Xt1 , . . . ,Xtv ),

s1 ≤ · · · ≤ su, t1 ≤ · · · ≤ tu, r = t1 − su is large

α(r) = sup
u,v

max
s1 ≤ · · · ≤ su

t1 ≤ · · · ≤ tu
r = t1 − su

α(σ(P), σ(F ))→r→∞ 0 (Rosenblatt)

See Bradley (1983, 2002), Doukhan (1994), Doukhan, Massart & Rio (1994, 1995), Rio
(2000) for extensive bibliography and sharp results.

Examples of non-mixing models

Andrews-Rosenblatt (1984)’s AR-model, Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid,

Galton-Watson model with immigration, Xt =
∑Xt−1

i=1 Yi,t + ξt , iid integer valued, EYi,t < 1.

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Mixing

α(σ(P), σ(F )) = sup
‖f ‖∞,‖g‖∞≤1

|Cov(f (P), g(F ))|

X = (Xt)t∈Z : P = (Xs1 , . . . ,Xsu ), F = (Xt1 , . . . ,Xtv ),

s1 ≤ · · · ≤ su, t1 ≤ · · · ≤ tu, r = t1 − su is large

α(r) = sup
u,v

max
s1 ≤ · · · ≤ su

t1 ≤ · · · ≤ tu
r = t1 − su

α(σ(P), σ(F ))→r→∞ 0 (Rosenblatt)

See Bradley (1983, 2002), Doukhan (1994), Doukhan, Massart & Rio (1994, 1995), Rio
(2000) for extensive bibliography and sharp results.

Examples of non-mixing models

Andrews-Rosenblatt (1984)’s AR-model, Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid,

Galton-Watson model with immigration, Xt =
∑Xt−1

i=1 Yi,t + ξt , iid integer valued, EYi,t < 1.

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Mixing

α(σ(P), σ(F )) = sup
‖f ‖∞,‖g‖∞≤1

|Cov(f (P), g(F ))|

X = (Xt)t∈Z : P = (Xs1 , . . . ,Xsu ), F = (Xt1 , . . . ,Xtv ),

s1 ≤ · · · ≤ su, t1 ≤ · · · ≤ tu, r = t1 − su is large

α(r) = sup
u,v

max
s1 ≤ · · · ≤ su

t1 ≤ · · · ≤ tu
r = t1 − su

α(σ(P), σ(F ))→r→∞ 0 (Rosenblatt)

See Bradley (1983, 2002), Doukhan (1994), Doukhan, Massart & Rio (1994, 1995), Rio
(2000) for extensive bibliography and sharp results.

Examples of non-mixing models

Andrews-Rosenblatt (1984)’s AR-model, Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid,

Galton-Watson model with immigration, Xt =
∑Xt−1

i=1 Yi,t + ξt , iid integer valued, EYi,t < 1.

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Mixing

α(σ(P), σ(F )) = sup
‖f ‖∞,‖g‖∞≤1

|Cov(f (P), g(F ))|

X = (Xt)t∈Z : P = (Xs1 , . . . ,Xsu ), F = (Xt1 , . . . ,Xtv ),

s1 ≤ · · · ≤ su, t1 ≤ · · · ≤ tu, r = t1 − su is large

α(r) = sup
u,v

max
s1 ≤ · · · ≤ su

t1 ≤ · · · ≤ tu
r = t1 − su

α(σ(P), σ(F ))→r→∞ 0 (Rosenblatt)

See Bradley (1983, 2002), Doukhan (1994), Doukhan, Massart & Rio (1994, 1995), Rio
(2000) for extensive bibliography and sharp results.

Examples of non-mixing models

Andrews-Rosenblatt (1984)’s AR-model, Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid,

Galton-Watson model with immigration, Xt =
∑Xt−1

i=1 Yi,t + ξt , iid integer valued, EYi,t < 1.

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

General formulation [Doukhan & Louhichi, 1999]

(Xt)t∈T (∈ E ), f : E u → R in F and g : E v → R in G:

|Cov (f (Xi1 , . . . ,Xiu ), g(Xj1 , . . . ,Xjv ))| ≤ Ψ(f , g)ε(r),

dT

(
{i1, . . . , iu}, {j1, . . . , jv}

)
≥ r , ε(r) ↓ 0

Choices of F ,G, Ψ, ε(r) yield different weak dependence conditions. Now T = Z,

i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv , Lip f = sup
(y1,...,yu) 6=(x1,...,xu)

|f (y1, . . . , yu)− f (x1, . . . , xu)|
‖y1 − x1‖+ · · ·+ ‖yu − xu‖

.

Ψ(f , g) = vLip g , ε(r) = θ(r), F = {‖f ‖∞ ≤ 1},G = {Lip g <∞},
= uLip f + vLip g , ε(r) = η(r), noncausal,F = G = {Lip g <∞},
= uvLip f · Lip g , ε(r) = κ(r),
= uLip f + vLip g + uvLip f · Lip g , ε(r) = λ(r).

Noncausal coefficients (symmetric Ψ, F = G) fit to non-causal processes.
We restrict to G a set of Lipschitz functions
Other causal cases including dynamical systems are considered with sharp limit theorems in Prieur’s talk
(see also Merlevède talk).
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Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

General formulation [Doukhan & Louhichi, 1999]

(Xt)t∈T (∈ E ), f : E u → R in F and g : E v → R in G:

|Cov (f (Xi1 , . . . ,Xiu ), g(Xj1 , . . . ,Xjv ))| ≤ Ψ(f , g)ε(r),

dT

(
{i1, . . . , iu}, {j1, . . . , jv}

)
≥ r , ε(r) ↓ 0

Choices of F ,G, Ψ, ε(r) yield different weak dependence conditions. Now T = Z,

i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv , Lip f = sup
(y1,...,yu) 6=(x1,...,xu)

|f (y1, . . . , yu)− f (x1, . . . , xu)|
‖y1 − x1‖+ · · ·+ ‖yu − xu‖

.

Ψ(f , g) = vLip g , ε(r) = θ(r), F = {‖f ‖∞ ≤ 1},G = {Lip g <∞},
= uLip f + vLip g , ε(r) = η(r), noncausal,F = G = {Lip g <∞},
= uvLip f · Lip g , ε(r) = κ(r),
= uLip f + vLip g + uvLip f · Lip g , ε(r) = λ(r).

Noncausal coefficients (symmetric Ψ, F = G) fit to non-causal processes.
We restrict to G a set of Lipschitz functions

Other causal cases including dynamical systems are considered with sharp limit theorems in Prieur’s talk
(see also Merlevède talk).
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Causal coefficients (F is the set of bounded functions)

θ coefficients: Ψ(f , g) = v‖f ‖∞Lip (g),
θp(M,X ) = sup{‖E(g(X )|M)− Eg(X )‖p

/
Lip g ≤ 1},

(Xi )i∈Z in Lp, (Mk)k∈Z σ-algebras (σ(Xj , j ≤ k)).

θp,v (r) = max
s≤v

1

s
sup

i+r≤j1≤···≤js

θp (Mi , (Xj1 , . . . ,Xjs )) , θ(r) = θ1,∞(r)

τ coefficients:

τp(M,X ) =

∥∥∥∥sup

{∫
g(x)PX |M(dx)−

∫
g(x)PX (dx)

∣∣Lip g ≤ 1

}∥∥∥∥
p

,

θp(M,X ) ≤ τp(M,X ),
τp,v (r) = maxs≤v

1
s supi+r≤j1≤···≤js τp (Mi , (Xj1 , . . . ,Xjv ))

γ coefficients (projective measure):
γp(M,X ) = ‖E(X |M)− E(X )‖p (≤ θp(M,X )), γp(r) = sup

i∈Z
γp(Mi ,Xi+r ).
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Hereditarity properties (Yn = h(Xn))

(Xn)n∈Z η, κ or λ-weakly dependent⇒ (Yn)n∈Z, for h Lipschitz.
(Xn)n∈Z, Rk -valued, p > 1, ∃c ,C > 0, a ∈ [1, p]: max1≤i≤k ‖Xi‖p ≤ C ,
h : Rk → R, h(0) = 0,

|h(x)− h(y)| ≤ c |x − y |(|x |a−1 + |y |a−1) ∀x , y ∈ Rk .

(Xn)n∈Z η-weak dependent, then (Yn)n∈Z also, and

ηY (n) = O
(
η(n)

p−a
p−1

)
;

(Xn)n∈Z λ-weak dependent, then (Yn)n∈Z also, and

λY (n) = O
(
λ(n)

p−a
p+a−2

)
.

This condition is satisfied by polynomials with degree a.
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Examples

Having in mind linear processes, we set:
Xt = H((ξt−j)j∈Z), H ∈ L1(RZ, µ) ξ ∼ µ

E
∣∣H (ξj , j ∈ Z)− H

(
ξj11|j|<r , j ∈ Z

)∣∣ ≤ δr ↓ 0 (r ↑ ∞)
η(r) = 2δ[r/2]

If H (xj , j ∈ Z) does not depend on xj , j < 0, it is θ-dependent and θ(r) = δr .
Wu makes use of those models, however the main problem is perhaps to find such

functions H ?

Gaussian or associated processes are weakly dependent,

κ(r) = O
(

supi≥r |Cov(X0,Xi )|
)

We now come to an unformal Botanic of the models

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications
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Vector valued LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
(1)

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt

(
a +

∞∑
j=1

ajXt−j

)
+ b +

∞∑
j=1

bjXt−j

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

p∑
j=1

βjσ
2
t−j + γ0 +

q∑
j=1

γj r
2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∞∑
j=1

βj r
2
t−j

If φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖ a solution of (1) in Lm is

Xt = ξt

(
a +

∞∑
k=1

∑
j1,...,jk>1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

(2)

θ(t) ≤ C ′/tb, if A(s) ≤ Cs−b,

θ(t) ≤ C ′(q ∨ φ)
√

t , if A(s) ≤ Cqs .

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Vector valued LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
(1)

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt

(
a +

∞∑
j=1

ajXt−j

)
+ b +

∞∑
j=1

bjXt−j

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

p∑
j=1

βjσ
2
t−j + γ0 +

q∑
j=1

γj r
2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∞∑
j=1

βj r
2
t−j

If φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖ a solution of (1) in Lm is

Xt = ξt

(
a +

∞∑
k=1

∑
j1,...,jk>1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

(2)

θ(t) ≤ C ′/tb, if A(s) ≤ Cs−b,

θ(t) ≤ C ′(q ∨ φ)
√

t , if A(s) ≤ Cqs .

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Vector valued LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
(1)

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt

(
a +

∞∑
j=1

ajXt−j

)
+ b +

∞∑
j=1

bjXt−j

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

p∑
j=1

βjσ
2
t−j + γ0 +

q∑
j=1

γj r
2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∞∑
j=1

βj r
2
t−j

If φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖ a solution of (1) in Lm is

Xt = ξt

(
a +

∞∑
k=1

∑
j1,...,jk>1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

(2)

θ(t) ≤ C ′/tb, if A(s) ≤ Cs−b,

θ(t) ≤ C ′(q ∨ φ)
√

t , if A(s) ≤ Cqs .

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Vector valued LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
(1)

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt

(
a +

∞∑
j=1

ajXt−j

)
+ b +

∞∑
j=1

bjXt−j

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

p∑
j=1

βjσ
2
t−j + γ0 +

q∑
j=1

γj r
2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∞∑
j=1

βj r
2
t−j

If φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖ a solution of (1) in Lm is

Xt = ξt

(
a +

∞∑
k=1

∑
j1,...,jk>1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

(2)

θ(t) ≤ C ′/tb, if A(s) ≤ Cs−b,

θ(t) ≤ C ′(q ∨ φ)
√

t , if A(s) ≤ Cqs .

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

General nonMarkov nonlinear models

Processes with infinite memory: Xt = F (Xt−1,Xt−2,Xt−3, . . . ; ξt)
(ξt)t∈Z iid, F : (Rd)N × RD → Rd . If A = ‖F (0, 0, 0, . . . ; ξt)‖m <∞, m ≥ 1
and ‖F (x1, x2, x3, . . . ; ξt)− F (y1, y2, y3, . . . ; ξt)‖m ≤

∑∞
j=1 aj‖xj − yj‖ with

e−α =
∑∞

j=1 aj < 1 then existence in Lm, stationarity and weak dependence

hold with: θ(r) ≤ C inf
N>0

∑
j≥N

aj + e−
αr
N



Random fields with infinite interactions: Xt = F
(

(Xt−j)j∈Zd\{0}; ξt
)

Causal set C ⊂ Zd : 0 /∈ C̃ =

{
k∑

i=1

ni ji
/

j` ∈ C , n` > 0, 1 ≤ ` ≤ k <∞

}
Causal sets are Singletons, half lines or an open half space with half of its
boundary in Z2 (improves on the usual quadrants condition!) .
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General nonMarkov nonlinear models

Regression models Xt = f (Xt−`1 , . . . ,Xt−`k ) + ζtg(Xt−`1 , . . . ,Xt−`k ) + ξt

‖f (x1, . . . , xk)− f (y1, . . . , yk)‖ ≤
∑k

i=1 bi‖xi − yi‖
‖g(x1, . . . , xl)− g(y1, . . . , yl)‖ ≤

∑l
j=1 cj‖xj − yj‖

}
⇒ η(r) ≤

C
(
e−

α
2k

)r
if e−α =

∑k
i=1(bi + ‖ζ0‖∞ci ) < 1 or

e−α =
∑k

i=1(bi + ‖ζ0‖mci ) < 1 if {`1, . . . , `k} is causal.

Linear fields Xt =
∑
j∈C

Aj
tXt−j + ξt ,

((
Aj

t

)
j∈C

, ξt

)
t∈Zd

iid, ‖ξ0‖m <∞,∑
j∈C ‖A

j
0‖∞ < 1,

∑
j∈C ‖A

j
0‖m < 1 is enough for C causal

Xt = ξt +
∞∑
i=1

∑
j1,...,ji∈A

Aj1
t Aj2

t−j1
· · ·Aji

t−j1−···−ji−1
ξt−(j1+···+ji ).
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General nonMarkov nonlinear models

LARCH(∞) random fields Xt = ξt

(
a +

∑
j∈C

ajXt−j

)
exists if

‖ξ0‖∞
∑

j∈C ‖aj‖ < 1
‖ξ0‖m

∑
j∈C ‖aj‖ < 1 is enough if C is causal

Non linear ARCH(∞) fields Xt = ξt

(
a +

∑
s∈C

gs(Xt−s)
)
,

‖gs(x)− gs(y)‖ ≤ as‖x − y‖. ‖ξ0‖∞
∑

s∈C as < 1 implies η weak dependence,
‖ξ0‖m

∑
s∈C as < 1 also for C causal.

Mean fields type model Xt = f
(
ξt ,
∑
s∈C

asXt−s

)
supu ‖f (u, x)− f (u, y)‖ ≤ b‖x − y‖, b

∑
i 6=0 ‖ai‖ < 1,

‖f (ξ0, x)− f (ξ0, y)‖m ≤ b‖x − y‖, b
∑

i 6=0 ‖ai‖ < 1, for C causal.
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Models with dependent innovations

Xt = H((ξt−j)j∈Z),

ξ stationary, η or λ-weak dependent

If E|ξ0|m
′
<∞ , and xj = yj for j 6= s,

|H ((xj)j∈Z)− H ((yj)j∈Z)| ≤ bs

(
sup
j 6=s
|xj |` ∨ 1

)
|xs − ys | then

∑
s sbs <∞, implies

existence in Lm, if `m + 1 ≤ m′.
If bs ≤ Cs−b,

ηξ(r) ≤ Cr−η ⇒ η(r) ≤ C ′r−η(1− 1
b−1 ) m′−2

m′−`−1

λξ(r) ≤ Cr−λ ⇒ λ(r) ≤ C ′r
−λ(1− 2

b )
(
1− `

m′−1

)

This applies e.g. to linear processes, H symmetric polynomial, non causal LARCH(∞),
etc.
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Integer valued models

Set for a > 0 and X ∈ Z

a ◦ X = sign(X )

|X |∑
i=1

Yi

with Yi independent of the context and iid with mean a.

The first example is the Galton-Watson process with immigration

Xt = a ◦ Xt−1 + ξt

It was extended in various papers by Alain Latour (D., Oraichi, 2006) for
bilinear type extensions Xt = a ◦ Xt−1 + b ◦ (εt−1Xt−1) + εt and a paper is in
preparation with Latour, Truquet and Wintenberger for integer LARCH(∞)
models.

Such models also provide a wide class of nonmixing processes.
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Some Applications

Due to the complexity of our models, a main problem is how to fit them ?

VLMC are infinite memory systems (Antonio Galvez et alii work)

moment estimators for bilinear, LARCH(∞) or INLARCH(∞) models (D.,

Latour, Truquet, Wintenberger)

asymptotic Gaussian behavior of parametric Whittle estimate is based on limit
theorems for the empirical periodogram (Bardet, D., & León)

kernel estimation (Ango Nze, Ragache, Wintenberger, Louhichi, Dedecker & Prieur)

subsampling (see below) or resampling (Ango-Nze, Bardet, Bülhmann, D., Léon,

Neumann)

functional thresholded estimation (Gannaz, Wintenberger)

stochastic algorithms with dependent inputs (D., Brandière)

censored data spectral analysis (Bahamonde, D., Moulines)

random fields (reliability of large multicomponent systems) (Lang, Ycart,

Truquet, Bulinskii & Shashkin)
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Neumann)

functional thresholded estimation (Gannaz, Wintenberger)

stochastic algorithms with dependent inputs (D., Brandière)

censored data spectral analysis (Bahamonde, D., Moulines)

random fields (reliability of large multicomponent systems) (Lang, Ycart,

Truquet, Bulinskii & Shashkin)

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Some Applications

Due to the complexity of our models, a main problem is how to fit them ?

VLMC are infinite memory systems (Antonio Galvez et alii work)

moment estimators for bilinear, LARCH(∞) or INLARCH(∞) models (D.,

Latour, Truquet, Wintenberger)

asymptotic Gaussian behavior of parametric Whittle estimate is based on limit
theorems for the empirical periodogram (Bardet, D., & León)

kernel estimation (Ango Nze, Ragache, Wintenberger, Louhichi, Dedecker & Prieur)

subsampling (see below) or resampling (Ango-Nze, Bardet, Bülhmann, D., Léon,
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Neumann)

functional thresholded estimation (Gannaz, Wintenberger)

stochastic algorithms with dependent inputs (D., Brandière)

censored data spectral analysis (Bahamonde, D., Moulines)

random fields (reliability of large multicomponent systems) (Lang, Ycart,

Truquet, Bulinskii & Shashkin)

Paul Doukhan, Samos, University Paris 1, LS-CREST Weak Dependence, Models and Applications



Independence Mixing General formulation Hereditarity properties Examples Some Applications Lindeberg Method

Some Applications

Due to the complexity of our models, a main problem is how to fit them ?

VLMC are infinite memory systems (Antonio Galvez et alii work)

moment estimators for bilinear, LARCH(∞) or INLARCH(∞) models (D.,

Latour, Truquet, Wintenberger)

asymptotic Gaussian behavior of parametric Whittle estimate is based on limit
theorems for the empirical periodogram (Bardet, D., & León)

kernel estimation (Ango Nze, Ragache, Wintenberger, Louhichi, Dedecker & Prieur)

subsampling (see below) or resampling (Ango-Nze, Bardet, Bülhmann, D., Léon,
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Limit theorems are fundamental to prove consistencies

Donsker invariance principles D., Louhichi (1999) and D., Wintenberger
(2007); for causal cases, sharp results D. & Dedecker (2003), Dedecker &
Prieur (2005) for the coefficient α̃,

empirical CLT (D., Louhichi, Lang, Dedecker, Prieur) under causal or
noncausal assumptions,

for iid rvs, Bernstein inequality writes P(Sn ≥ t
√

n) ≤ C exp
{
− t2

2σ2+K t√
n

}
? With Louhichi we use moment combinatorics to get ≤ Ce−c

√
t ,

? Cumulant techniques give ≤ C exp
{
− t2

2σ2 + K (t/
√

n)α

}
with Neumann,

? Dedecker & Prieur use coupling arguments under causality.
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Lindeberg Method (D.,Bardet, Lang & Ragache, 2007)
Apologizes are done to one organizer but I will talk about a joint work he does not like!

Xi = (Xi,1, . . . ,Xi,d) is 0-mean, Ak =
∑k

i=1 E
(
‖Xi‖2+δ

)
<∞, δ ≤ 1

for Yi ∼ N (0,Var Xi ) independent and f ∈ C3
b and k ∈ N∗:

∆k =
∣∣∣E(f (X1 + · · ·+ Xk)− f (Y1 + · · ·+ Yk)

)∣∣∣ (3)

Lemma 1 [standard Lindeberg Lemma under independence, 1922]

∆k ≤ 3 ‖f (2)‖1−δ∞ ‖f (3)‖δ∞ · Ak .

Lemma 2 [Lindeberg Lemma under dependence]

Set f (x) = e i<t,x> for t ∈ Rd , T (k) =
k∑

j=1

∣∣Cov(e i<t,X1+···+Xj−1>, e i<t,Xj>)
∣∣ then

∆k ≤ T (k) + 3‖t‖2+δAk .
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Lindeberg CLT

A C.L.T. is proved by using Bernstein blocks

Theorem 1 [Doukhan and Wintenberger, 2006]

(Xi )i∈N stationary 0-mean, with (2 + δ)-order moments (δ > 0). If:

(Xi )i∈N is a κ-weakly dependent time series satisfying κ(r) = O(r−κ) when
r →∞, with κ > 2 + 1/δ, or

(Xi )i∈N is λ-weakly dependent with λ(r) = O(r−λ) when r →∞, with
λ > 4 + 2/δ,

then
1√
n

[nt]∑
i=1

Xi
D−→

k→∞
σWt for some σ2 ≥ 0.
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Subsampling

Proposition 1

(Xi )i∈Z 0-mean, (2 + δ)-order stationary, δ > 0.
If (mn)n∈N is such that mn −→

n→∞
∞ and kn =

[
n/mn

]
−→
n→∞

∞,

Skn,n =
1√
kn

kn∑
i=1

Ximn

D−→
n→∞

Nd(0,Σ), Σ = Cov(X0)

if moreover

(Xi )i∈Z is a θ−weakly dependent sequence and θ(mn)
√

kn −→
n→∞

0.

(Xi )i∈Z is a λ−weakly dependent sequence and λ(mn)k
3
2
n −→

n→∞
0.
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Kernel density estimation

(Xi )i∈N stationary with marginal density fX . K : R→ R bounded Lipschitz,∫∞
−∞ K (t) dt = 1

f̂
(n)
X (x) =

1

n

n∑
i=1

1

hn
K

(
x − Xi

hn

)
for x ∈ R, hn −→

n→∞
0, nhn −→

n→∞
∞
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Kernel density estimation

Proposition 2

If ‖fX‖ <∞, supi 6=j ‖fi,j‖∞ <∞ (joint marginal densities), then

√
nhn

(
f̂

(n)
X (x)− Ef̂

(n)
X (x)

)
D−→

n→∞
N
(

0, fX (x)

∫
R

K 2(t) dt
)
,

Dependence Condition of dependence Condition on hn

κ κ(r) = O(r−κ) with κ > 6 hn = o
(
n−2/(κ−4)

)
η η(r) = O(r−η) with η > 5 hn = o

(
n−5/(2η−5)

)
λ λ(r) = O(r−λ) with λ > 6 hn = o

(
n−

2
λ−4∨

5
2λ−5

)
θ θ(r) = O(r−θ) with θ > 3 hn = o(1)

fX ∈ Cp(R), p ∈ N∗. If hn = C · n−1/(2p+1) and, λ > 5p + 5, θ > 3, κ > 4p + 6, or η > 5p + 5
then √

nhn

(
f̂

(n)
X (x)− fX (x)

)
→ N

(
f

(p)
X (x)

p!

∫
R

tpK (t) dt , fX (x)

∫
R

K 2(t) dt

)
Here

∫
R K (t)tq dt = 0 for 0 < q < p and

∫
R K (t)tp dt 6= 0.
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Subsampled kernel density estimation

If mn −→
n→∞

∞ and kn =
[
n/mn

]
−→
n→∞

∞, set:

f̂
(n,mn)
X (x) =

1

kn

kn∑
i=1

1

hn
K

(
x − Ximn

hn

)
, for x ∈ R

Proposition 3

√
knhn

(
f̂

(n,mn)
X (x)− Ef̂

(n,mn)
X (x)

)
D−→

n→∞
N
(

0, fX (x)

∫
R

K 2(t) dt
)

Arbitrary dependence rates are required and they are related to the sampling
window mn.
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