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1 Fractional Brownian motion

A. N. Kolmogorov (1940), B. Mandelbrot and J. Van Ness (1968),...

Definition 1 Let H € (0,1). The fractional Brownian motion
Wi = {Wg @)} rer (fBm) with Hurst index H is the real centered Gaussian
process such that

BIWr (W ()] = 5 (27 + s/ — [t — s/,

Remark: if H = 1/2 then W1 /2 is a classical Brownian motion.




Property 1 (Self-similarity)
Wy is self-similar with index H: for every v > 0

(Wa(v)her £ {(VTWa(t)bier

Property 2 (Regularity)
For every H' < H, there exists a modification of Wy which is locally Holder
continuous with exponent H'. In fact, the pointwise Holder exponent at a point

to s a.s. equal to H, i.e.

aw,, (to) := sup {a :




Definition 2 (Increments of Wy : fractional white noise)

The sequence of the increments of Wy which are defined for every n by
Wg(n):=Wg(n+1) —Wg(n)

is called the fractional white noise (with index H ).

Property 3 (Stationarity of increments)

OW g is stationary: for every m,n € N

E[0Wr (m)0Wg (n)] = E[6Wg (0)6Wg (n — m)]




From now we assume that H > 1/2.

Property 4 (Long-range dependence of increments)

OW i satisfies the long-range dependence relation

> E[FW (0)6Wg (n)] = occ.

n=0

More precisely: as n — oo

E[6Wx (0)6Wx(n)] ~ H(2H — 1)n?H 2,

Remark: This is in dramatic contrast with the case of classical Brownian
motion Wy /o !




2 Invariance principle

Property 5 (For classical Brownian motion W 5)
Let {Xn}n be a stationary sequence of independent Gaussian random

variables, then

. V)

_ 1
lim \/—N nz::l Xn — {COW1/2(t)}tZO

N — oo
t>0

with c3 = E[X3].

Also known as functional central limit theorem, Donsker theorem...




Property 6 (For fBm Wy with H > 1/2)
Let {Xn}n be a sequence of stationary Gaussian variables such that when

n — oo

(© @]
E[XoXn] ~ en?H 72 with ¢ > 0 <zn particular Z E[XoXn] = oo> :

n=0

Then
d | Nt]
lim Z Xn = {coWgn(t) }+>0

N — oo
t>0

with ¢ = H-'(2H — 1)~




To summarize about fractional Brownian motion

Interests of fBm:
e Generalizes cBm,
e provides model for long-range dependence,
e satisfies an invariance principle.

Drawback of fBm:

e Homogeneity of its properties (its pointwise Holder exponent is

constant...).
Consequence:

e Introduction of “multi” fractional processes...




3 Multifractional Brownian motion

(Independently introduced by R.F. Peltier and J. Lévy Vehel (1996) and by A.
Benassi, S. Jaffard and D. Roux (1997))
Consider the set of fractional Brownian motions {Wg } ¢ (0,1) defined by

oo e—za:t —1 ~

- |$|H+1/2 B(dz)

where B(dz) is the Fourier transform of a real Brownian measure B(d¢). We
make
H — h(t)

to get:

Definition 3 (Multifractional Brownian motion)
Let a function h : R — (0,1). The multifractional Brownian motion W}, with
Hurst function h is defined by

1 oo e—z'a:t -1 ~
Wi (t) :== Wy (t) = ChD) /_OO WIIOESYE B(dzx).




Assumption (A): There exists 8 > 0 such that h is B—Hodlder and

sup h < 3.

Property 7 (Local self-similarity)
Under (A), Wy, is locally self-similar with function h: for every t > 0

licrln { Wi (t 4+ eu) — W (t) } _ {C(t)Wh(t)(u)}UZO’
u>0

e—0 5h(t)

where ¢ 1s a function.

Property 8 (Regularity)
Under (A), for every to the Holder pointwise exponent aw, (to) of Wy, is

almost surely equal to h(tp).




Therefore, multifractional Brownian motion W}, with Hurst function
h:R— (1/2,1)

could be a relevant alternative to fractional processes with H € (1/2,1) to

provide models for long-range dependences.

But, can W}, (or an other multifractional Gaussian process) serve as an

universal Gaussian models for long-range dependence 7




4 The main result

Let
o X ={X,(H),H € (1/2,1),n € N} be a centered Gaussian field
e and h: R — [a,b] C (1/2,1) be a continuous function.

We also let the assumptions

e Assumption (i) For every M > 0 the map
(4, k, H1, H2) — E[X; (H1) X (H2)]

is bounded on {(j,k) € N2, |j — k| < M} X [a, b]?.

e Assumption (ii) There exists a continuous function R : [a, b]? — (0, c0)

such that when 5 — k£ — o0
E[X;(H1)Xy(Hz)] ~ R(Hi, Hz)(j — k)1 TH272

uniformly for (Hy, H2) € [a, b]?.




For every n, N € N we define

n
= ()

Theorem 1 Under Assumptions (i) and (ii),

. [

lim ¢ > Xnlhy) = {Sh(t)}i>0

N — oo —1 Nh,{l’
n= t>0

where Sy, 1s a centered Gaussian process such that

E[Sh(t)Sh(s)] = /Ot d /O do R(0,0;h(0), h(0))|0 — o|MO (o) =2

where R is defined for every t,s, Hi, Ho by

R(t,s; Hi, H2) = R(H1, H2)14>5 + R(Hz2, H1)li<s.

Remark: If h=H € (1/2,1), then Theorem 1 is the classical invariance
principle for fBm.




Assumption (A’): There exists § > 0 such that h is §—Hoélder.

Property 9 (Local self-similarity)
Under (A’), Sy is locally self-similar with function h: for every t > 0

d {Sh(t+€u) — Sp(t)

lim
e—0

h(t) }u>0 = {c(®)Wht) (@) }u>0,

R(h(t), h(t))
(2h(t)% — h(?))

c(t)? =

Property 10 (Regularity)
Under (A’), for every to the Hélder pointwise exponent ag, (to) of Sy, is
almost surely equal to h(tg).

Remark: (A’) is weaker than (A)!




Main ideas of the proof of Theorem 1: It consists in studying the limit of

| Nt] | Ns| |Nt] | Ns|

Xn(hy) X (hp)
I Z ;hﬁf Z NhN Z Z hN—HLN X”(hf’y
n=1 m=1

e Assumption (ii) = if |n — m| is large, then

1
NhEY +hL

BLG () X)) = R (5

e Assumption (i) = if |n — m/| is small, then

1
Nhrjy—l—h%

E[Xn (A ) Xm (hiy)] =




Therefore

[Nt] [Ns]

> 2. hMN E[ X (hY ) Xom (h)]

n=1 m=1

[Nt] [Ns]

nm mn
NQZZR< hNhN)N_N

n=1 m=1

—>/ d@/ do R(6, 0 h(8), h(c))|0 — o| MO+ (o) =2
0 0

as N — oo using a Riemann sum convergence type theorem. O




To summarize

Now: we have got a Gaussian process which is

e limit of an invariance principle (by definition !),

e multifractional (local self-similarity and regularity properties),

e suitable for modelling long-range dependence (because obtained for
h:RT — (1/2,1)).

But: how is this process related to multifractional Brownian motion ?




Representation of 5,

Let us consider the set of fractional Brownian motions {Wg } ge(1/2,1) defined
by

o%e) e—z'a:t —1 ~
/OO —|:C|H+1/2 B(dx)

from the real Brownian measure B(d¢).
We let for every H € (1/2,1)

We can easily check that such a field satisfies the assumptions of Theorem 1,
then, there exists Sj, such that

| Nt N
-d Xn(hn )
Jim 4 T = {Sh()}t>0
n=1 £>0
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We have




Hence, we have

| N't] N
d 3 X (RY)

N —oco
n=1

Combined with

this gives

{Sh(t)}i>0 =1

where ® is a C! process.



But we can generalize for an arbitrary field {X, (H)},. m:

Theorem 2 Let {X,(H)}n g satisfying (i), (1) and assume that R and h are
sufficiently reqular We have

OW (0, H) d e} |
OH
H=h(6) t>0

{Sn}iz0 = {W(t,h(t))—/ot h'(6)

where {W(t, H)}+ i, ts obtained by

d 1 LVt __
lim § 7 > Xn(H) = {(W(t,H)}e.1
n=1

N —co
t,H




To summarize

Wy
integral representation \| invariance principle
Wy, generalizations Sh

N /
Wy — @ =8




