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1. Aggregation: from “random” Markovian short memory towards

“nonrandom” long memory

• Long memory and heavy tails are among the most widely discussed “styl-

ized facts” of financial time series

• see e.g. Mikosch (2003): Modelling dependence and tails of financial time

series

• Economic reasons for long memory (LM) are not clear

• LM can be partly explained by regime shifts and/or aggregation

• Granger (1980): (contemporaneous) aggregation of N random-coefficient

AR(1) processes:

Xit = aiXi,t−1 + εit, i = 1, 2, · · · , N

• {εit, t ∈ Z}: standardized i.i.d.; ai ∈ (0, 1): random, independent of {εit}

• {Xit}, i = 1, · · · , N : “micro-agents”; random parameter a: heterogeneity

of micro-agents

• idiosyncratic innovations: {εit}, i = 1, 2, · · ·: independent (and identically

distributed) =⇒ {Xit}, i = 1, 2, · · · independent (and identically distributed)

• common innovations: {εit} ≡ {εt}, i = 1, 2, · · · =⇒ {Xit}, i = 1, 2, · · · mutu-

ally dependent
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• Aggregated process:

N−1/2
N∑

i=1

Xit
fdd−→ X̄t (idiosyncratic scheme)

N−1
N∑

i=1

Xit
fdd−→ X̄t (common scheme)

• spectral density of {X̄t} (idiosyncratic scheme):

fX̄(z) = (2π)−1E
[ 1

|1− aeiz|2
]

= (2π)−1E
[ 1

(1− a)2 + 4a sin2(z/2)

]
, z ∈ [−π, π]

• If the (mixing) distribution Φ(da) := P(a ∈ da) has a regularly varying at

a = 1 (= the unit root) probability density:

φ(a) ∼ φ1(1− a)b, a ↑ 1 (∃ 0 < b < 1, φ1 > 0), (1)

then fX̄(z) is unbounded at z = 0 and has a power behavior with exponent
b− 1 ∈ (−1, 0) as z → 0:

fX̄(z) ∼ φ1

2π

∫ 1

0

(1− a)bda

(1− a)2 + 4a sin2(z/2)

∼ φ1

2π

∫ 1

0

vb dv

v2 + 4 sin2(z/2)

∼ φ1

2π(2 sin(z/2))1−b

∫ 1/2 sin(z/2)

0

wbdw

w2 + 1

∼ C

z1−b
, C := φ1

2π

∫∞
0

wbdw
w2+1
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• The above behavior of spectral density is characteristic to LM

• By the classical CLT, {X̄t} is Gaussian

• Granger (1980): Beta-distributed a; Gonçalves and Gourieroux (1988),

Zaffaroni (2004)

• particular mixing density φ(a) ∝ ad−1(1 + a)(1− a)1−2d (corresponding to

b = 1− 2d) leads to FARIMA(0, d, 0) process {X̄t} (Celov et al., 2007)

• Oppenheim and Viano (2001): aggregation of AR(p), p ≥ 1 and seasonal

LM

• singular mixing density (1) with b < 0: nonstationary LM (Zaffaroni,

2004)

• Common innovations: similar results

• Related problems:

- disaggregation: statistical estimation of the mixing density from observed

sample X̄1, · · · , X̄n (Celov et al., 2007)
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- aggregation of conditionally heteroskedastic models: Ding and Granger (1996),

Zaffaroni (2007a, 2007b), Giraitis et al. (2010)

Giraitis et al. (2010): aggregation of random-coefficient GLARCH(1,1) with

common standardized innovations {εt}:

Xit = εtVit, Vit = (1− ai) + aiVi,t−1 + cai

√
1− a2

i Xi,t−1, i = 1, · · · , N

0 < c < 1: parameter; ai ∈ (0, 1): i.i.d. random coefficients, ai ∼Beta(p, q), p, q >

0.

Then

N−1
N∑

i=1

Xit
fdd−→ X̄t,

where {X̄t = εtV̄t} is a stochastic volatility process with LM (for 0 < q < 1/2)

• For 0 < c small enough and 0 < q < 1/2

nq−1 ∑[nt]
s=1(V̄

2
s − EV̄ 2

s )

nq−1 ∑[nt]
s=1(X̄

2
s − EX̄2

s )

}
D[0,1]−→ 2YG(t) (n →∞), (2)

where

YG(t) :=

∫ t

−∞

{∫ t

0∨s

G(
W (τ)−W (s)√

τ − s
)

dτ

(τ − s)q+(1/2)

}
dW (s), t ≥ 0

• {YG(t)} is a stationary increment self-similar process with index H :=

1− q ∈ (1/2, 1)
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• {YG(t)} is well-defined for any G : R→ R with EG2(Z) < ∞, Z ∼ N(0, 1)

and any 0 < q < 1/2, as a backward Itô integral

• For G ≡ const, {YG(t)} is a fractional Brownian motion

• In (2), G is a special function expressed via the degenerated hypergeometric

function

- aggregation of autoregressive random fields: Lavancier (2005), Azomahou

(2009)

• Conclusion: aggregation of simple dynamic AR(1) equations can lead to

well-studied Gaussian or linear fractionally integrated I(d) models with long

memory
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2. Aggregation of infinite variance AR(1): common innovations

Puplinskaitė & S. (2009):

Xit = aiXi,t−1 + εt, i = 1, 2, · · · , N (3)

{εt, t ∈ Z} : i.i.d. in the domain of (normal) attraction of α−stable law,

1 < α ≤ 2; Eεt = 0

ai ∈ (0, 1): i.i.d., independent of {εt}; E[ 1
(1−ap)1/p ] < ∞ (∃p < α)

A := σ{ai, i = 1, 2, · · ·}

Then there exist stationary solution {Xit} of (3) given by Xit =
∑∞

j=0 aj
iεt−j

and

N−1
N∑

i=1

Xit =
∞∑

j=0

{
N−1

N∑

i=1

aj
i

}
εt−j

Lp(A)−→ X̄t :=
∞∑

j=0

ājεt−j

where āj := Eaj.

• Assume the mixing density satisfies

φ(a) ∼ φ1(1− a)−d, a ↑ 1 (∃ d < 1, φ1 > 0) (4)

Then the āj’s decay as jd−1 as j →∞ (
∑∞

j=0 |āj| = ∞ when 0 < d < 1):

āj ∼ φ1

∫ 1

0
aj(1− a)−dda

= φ1

∫ 1

0
(1− v)jv−ddv

∼ φ1

∫ 1

0
e−vjv−ddv

∼ Cjd−1, C := φ1

∫∞
0 e−ww−ddw

7



• The case of Beta-distributed a ∼ Beta(p, 1− d) leads to FARIMA(0, d, 0)

process:

āj = Eaj =
1

B(d, 1− d)

∫ 1

0
ajad(1− a)−dda =

Γ(j + d)

Γ(d)Γ(j + 1)

• Under (4), {X̄t} is a well-defined MA process in i.i.d. innovations {εt} ∈
D(α) iff

0 < d < 1− (1/α). (5)

• LM properties of such moving averages with regularly decaying coeffi-

cients are well-studied: Astrauskas (1983), Maejima (1983), Astrauskas et al.

(1991), Avram and Taqqu (1992), Samorodnitsky and Taqqu (1994)

• Under (4), (5), partial sums of {X̄t}, normalized by n1/α+d, tend to

α−stable fractional motion, which is self-similar with index H = (1/α)+d ∈
(1/α, 1)

• 1− (1/α) < d < 1 ⇒ nonstationary aggregated process {X̄t}

• α = 2: Zaffaroni (2004)
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3. Aggregation of infinite variance AR(1): idiosyncratic innova-

tions

AR(1) equation:

Xt = aXt−1 + εt, t ∈ Z (6)

{εt, t ∈ Z} : i.i.d. in the domain of (normal) attraction of α−stable r.v.

Z, 1 < α ≤ 2; Eεt = 0

a ∈ (0, 1): random and independent of {εt};

E[
1

1− a
] < ∞ (7)

{Xit}, i = 1, 2, · · ·: independent copies of {Xt} in (6)

Then

N−1/α
N∑

i=1

Xit
fdd−→ X̄t :=

∑
s≤t

∫ 1

0
at−sMs(da), (8)

where {Ms, s ∈ Z} are i.i.d. copies of an α−stable random measure on (0, 1)

with control measure Φ(da) := P(a ∈ da) (the mixing distribution)

The characteristic functional of Ms:

Eei
∑m

i=1 θiMs(Ai) = exp{−
m∑

i=1

|θi|αω(θi)Φ(Ai)} = exp{−
m∑

i=1

|θi|αω(θi)P(a ∈ Ai)},

Ai ⊂ (0, 1): any disjoint Borel sets, EeiθZ = e−|θ|
αω(θ), θ ∈ R
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• If α = 2, then (8) is Gaussian and

cov(X̄0, X̄t) =
∑
s≤0

∫ 1

0
at−sa−sΦ(da) = E

at

1− a2 = cov(X0, Xt)

• (8): particular case of mixed stable moving averages (S., Rosinski, Man-

drekar, Cambanis (1993))

• (8) is different from usual α−stable moving average except when Φ is

concentrated at a single point

• different mixing distributions Φ lead to different processes {X̄t}

• condition (7) is precise: if (7) is not satisfied, the limit aggregated process

can be degenerated and α′−stable, for α′ < α

• {εs := Ms(0, 1), s ∈ Z}: i.i.d. sequence of α−stable r.v.’s. Then

E
[ ∞∑

j=0

∫ 1

0
ajMt−j(da)

∣∣∣εs, s ∈ Z
]

=
∞∑

j=0

E[aj]εt−j. (9)

(9) establishes a link between the aggregated processes in the idiosyncratic

and common innovations schemes

• (9) follows from general interpolation formula (S., 1979)
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4. Mixed stable moving averages and SαS stationary processes

A mixed SαS moving average (0 < α < 2) is a stationary process

Y (t) =
∑

s∈Z

∫

W

g(v, t− s)Ms(dv), t ∈ Z (10)

where:

W is a measurable space with σ−finite measure µ;

g ∈ Lα(W × Z);

{Ms, s ∈ Z} are i.i.d. copies of a SαS random measure on W with control

measure µ.

• mixed SαS moving averages generalize usual SαS moving averages and

their sums

• finite-dimensional distributions of mixed SαS moving averages are SαS

• mixed SαS moving averages are ergodic and mixing

• The triplet (W, g, µ) determines the distribution of {Y (t)} uniquely. The

interesting question is to find conditions on (W1, g1, µ1) and (W2, g2, µ2) such

that the distributions of the corresponding mixed SαS moving averages co-

incide: {Y1(t)} fdd
= {Y2(t)}
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• S. et al. (1993): there is a 1-1 correspondence between the distribution of

a mixed SαS moving average and a certain measure π on the unit sphere of

the factor space Lα(Z)/ ∼ (with the equivalence up to sign and shift) (π is

defined from (W, g, µ))

• mixed SαS moving averages play important role in the general theory of

stationary SαS processes (Rosinski, 1995):

Any SαS stationary process {Y (t), t ∈ Z} (0 < α < 2) admits a stochastic

integral representation

Y (t) =

∫

E

ft(x)M(dx),

where:

M is a SαS random measure on a measurable space E with σ−finite control

measure µ;

ft(x) = at(x)
[dµ ◦ ϕt

dµ
(x)

]1/α

(f0 ◦ ϕt)(x);

where

f0 ∈ Lα(E, µ);

{ϕt} is a nonsingular flow (a flow is a family of mappings ϕt : E → E such

that ϕt1+t2 = ϕt1 ◦ ϕt2 and ϕ0 is identity);

{at} is a cocycle (a family of mappings at : E → {−1, 1} such that at1+t2 =

at2(at1 ◦ ϕt2)).
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Using Hopf’s decomposition (of a given flow into conservative and dissipative

parts), Rosinski (1995) showed that any SαS stationary process Y can be

written as a sum of two independent SαS stationary processes YC (”conser-

vative”) and YD (”dissipative”): Y = YC + YD.

Furthermore, any “dissipative” SαS stationary process is a mixed SαS moving

average (Rosinski, 1995)
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5. Long memory properties of the aggregated process

The aggregated α−stable process (mixed α−stable moving average):

X̄t :=
∑
s≤t

∫ 1

0
at−sMs(da), (11)

where

{Ms} are i.i.d. α−stable random measures on (0, 1) with control measure

Φ(da) = P(a ∈ da)

Assume that Φ has a probability density φ regularly decaying at a = 1 with

exponent b > 0:

φ(a) ∼ φ1(1− a)b, a ↑ 1 (∃ φ1 > 0, b > 0) (12)

We expect that for some values of the parameters α and b, the process in

(11) will exhibit long memory, in a certain sense
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5.1 Partial sums and self-similarity

Definition 1 (Cox, 1984) A strictly stationary time series {Yt} is said to

have distributional long memory or distributional short memory if there exist

some constants An →∞ (n →∞) and Bn, and a stochastic process {J(t), t ≥
0} 6≡ 0 with dependent increments or, respectively, independent increments

such that

A−1
n

[nt]∑
s=1

(Ys −Bn)
fdd−→ J(t). (13)

• Lamperti (1962): under mild additional assumptions, constants An in (13)

grow as nH with some H > 0 and the limit process {J(t), t ≥ 0} is self-similar

with index H.

Theorem 1

(i) Let 1 < α < 2 and 0 < b < α− 1. Let H := 1− b/α. Then

1

nH

[nτ ]∑
t=1

X̄t
fdd−→ Z(τ),

where:

Z(τ) :=

∫

R+×R
(f(x, τ − s)− f(x,−s))ν(dx, ds), (14)

f(x, t) := (1− e−xt)1(x > 0, t > 0),

ν : α−stable r. m. on (0,∞)× R with control measure φ1x
b−αdxds
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(ii) Let 0 < α < 2 and b > max(α− 1, 0). Then

1

n1/α

[nτ ]∑
t=1

X̄t
fdd−→ α− stable Lévy process

• 3 different behaviors of the AR(1) aggregation scheme:

1 < α < 2, 0 < b < α− 1: distributional long memory

0 < α < 2, b > max(α− 1, 0): distributional short memory

0 < α < 2, −1 < b < 0: degenerate: α(1 + b)−stable constant

• {Z(t)} of (14) is H−sssi with H = 1 − (b/α) ∈ (1/α, 1), has α−stable

distributions and a.s. continuous paths

• {Z(t)} of (14) is different from fractional stable motion

• Related α−stable H−sssi processes: S. et al. (1992), Cioczek-Georges et

al. (1995), Cioczek-Georges and Mandelbrot (1995) (“fractal sums of pulses”)
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5.2 LRD(SAV) property

LRD(SAV) = Long Range Dependent (Sample Allen Variance)

Definition 2 (Heyde and Yang, 1997)

(i) A strictly stationary zero-mean process {Yt} is called LRD(SAV) if

(
∑n

t=1 Yt)
2

∑n
t=1 Y 2

t

tends to ∞ in probability as n →∞.

(ii) A strictly stationary zero-mean process {Yt} is called SRD(SAV) if the

above ratio is bounded in probability.

• applies to finite and infinite variance processes

• requires finite mean (case α > 1 only)

• If {Yt} are i.i.d., Yt ∈ D(α), the ratio has a proper limit (Chistyakov and

Götze, 2004)

• applicable to α−stable moving averages and some other classes of LM

processes (Leipus et al., 2006)
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Theorem 2

(i) Let 1 < α < 2 and 0 < b < α− 1. Then {X̄t} is LRD(SAV).

(ii) Let 1 < α < 2 and b > α− 1. Then {X̄t} is SRD(SAV).

• Thm 2 agrees with Thm 1
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5.3 Codifference

Codifference (between Y0 and Yt) is defined (Samorodnitsky and Taqqu, 1994)

cod(Y0, Yt) := log Eei(Yt−Y0) − log EeiYt − log Ee−iY0

= log
(
1 +

cov(eiYt, eiY0)

EeiYtEe−iY0

)

• applies to finite and infinite variance processes (e.g., infinite variance mov-

ing averages)

• can be used to characterize the long memory of {Yt} and its intensity

• if {Yt} is a standardized Gaussian process then cod(Y0, Yt) = 1
2cov(Y0, Yt)

• related measure of dependence: bivariate characteristic function (As-

trauskas et al., 1991)

Theorem 3 Let 0 < α < 2 and 0 < b < 1. Then

cod(X̄0, X̄t) ∼ C t−b, t →∞,

where

C := φ1α
−1

∫ ∞

0
[ω(1)e−yα + ω(1)(1− (1− e−y)α)]yb−1dy.
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• ∑∞
t=0 |cod(X̄0, X̄t)| = ∞ for 0 < b < 1: “long memory”?

• For 0 < b < α− 1: Thm 3 agrees with the LM characterizations in Thms

1 and 2

• For b > max(0, α − 1): Thm 3 disagrees with the LM characterizations

in Thms 1 and 2 ?

• Contrary to distributional LM and LRD(SAV), the codifference measures

the dependence in {eiX̄t} rather than in {X̄t}

• We conjecture that for max(0, α − 1) < b < 1, the process {eiX̄t} has

distributional short memory, more precisely, that

n1/(1+b)
[nt]∑
i=1

(eiX̄t − EeiX̄t)
fdd−→ (1 + b)-stable Lévy process

with 1 + b > α (1 < α < 2), despite the fact that the covariance of {eiX̄t} is

not summable

• the above conjecture is based on corresponding results for bounded func-

tionals of usual infinite variance moving averages (S. (2002), Honda (2010)):
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Let Yt =
∑∞

j=0 cjεt−j, where {εj} i.i.d., εj ∈ D(α), cj ∼ j−β, and

1 < β < 2/α

Then

cod(Y0, Yt) ∼ const.t1−αβ, hence
∞∑
t=0

|cod(Y0, Yt)| = ∞.

At the same time,

n1/(αβ)
[nt]∑

i=1

(eiYt − EeiYt)
fdd−→ (αβ)-stable Lévy process
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5.4 Ruin probability

Classical problem of insurance mathematics is the asymptotics of the ruin

probability:

ψ(u) := P
(

sup
n≥1

(
n∑

t=1

Yt − cn) > u
)
, as u →∞, (15)

where:

{Yt}: random stationary (independent or dependent) sequence (“claims”)

c > 0: constant deterministic premium rate (c > EY1 =: µ)

u > 0: the initial capital (of the insurance company)

{
supn≥1(

∑n
t=1 Yt − cn) > u

}
: ruin occurs at some moment n ≥ 1

• The “classical” result in the i.i.d. claims situation is that ψ(u) =

O(u−(α−1)). If P(Y1 > x) ∼ cαx−α (x → ∞), α > 1 then (Embrechts and

Veraverbeke, 1982)

ψ(u) ∼ cα

(α− 1)(c− µ)
u−(α−1), u →∞. (16)

• (16) “remains valid” for weakly dependent claims
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• Mikosch and Samorodnitsky (2000): strongly dependent stationary SαS

claims {Yt}. See also Alparslan and Samorodnitsky (2007), Alparslan (2009)

• Mikosch and Samorodnitsky (2000) associate the ‘classical’ decay rate

ψ(u) = O(u−(α−1)) with short-range dependence and the decay rate ψ(u) =

O(u−ν) with exponent ν < α − 1 with long-range dependence of the claim

sequence {Yt}

• For stationary increments of linear α−stable fractional motion with self-

similarity parameter H ∈ (1/α, 1), Mikosch and Samorodnitsky (2000) ob-

tained a decay rate ψ(u) ∼ (constant) u−α(1−H) (different from (16)

• A natural problem is to extend the last result to the mixed α−stable

moving average process {X̄t}

Theorem 4 Let 0 < b < α− 1, 1 < α < 2 and {X̄t} be symmetric. Then

ψ(u) ∼ K(α, b)

cHα
u−α(1−H), u →∞,

where:

K(α, b) := (φ1/b)

∫ ∞

0
zbgα(z)dz + (φ1/α)

∫ ∞

0
wb−1gα(w)dw,

H := 1− b

α
∈ (

1

α
, 1) (the asymptotic self-similarity index),

g(w) := sup
z>0

1− e−z

w + z
(a continuous function with g(0+) = 1, g(w) = O(1/w))
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• The proof of Thm 4 uses the equivalence ψ(u) ∼ ψ0(u) in Mikosch and

Samorodnitsky (2000, Thm 2.5) to the heavy-tailed large deviation functional

ψ0(u) :=
1

2

∑

s∈Z

∫

W

sup
n≥1

(
∑n

t=1 f(v, t− s))α
+

(u + nc)α
µ(dv)

+
1

2

∑

s∈Z

∫

W

sup
n≥1

(
∑n

t=1 f(v, t− s))α
−

(u + nc)α
µ(dv);

where Yt =
∑

s∈Z
∫

W f(v, t−s)Ms(dv) is a general mixed SαS moving average

• Samorodnitsky (2004) associated long memory with the rate of growth of

maxima and partial maxima of a stationary α−stable process. Theorem 4.1

of the above paper says that partial maxima of an SαS process generated by

a dissipative flow always grow at the rate n1/α. Therefore, the rate of growth

of the sequence of partial maxima is incapable of discriminating between

long memory and short memory in the aggregate process in (8), since this

process is a particular case of the class of mixed moving averages generated

by dissipative flows.
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6. Concluding remarks

• Aggregation of simple AR(1) process with heavy-tailed noise leads to a

natural class of “AR(1)” mixed stable moving averages [= limits of sums

of independent α−stable AR(1) processes]. The dependence in the aggre-

gated process is completely specified by the mixing distribution of the ran-

dom AR(1) coefficient. If the mixing density has a power decay at the unit

root a = 1, the aggregated α−stable process displays long memory which can

be characterized according to several definitions.

• There exists a notable “1-1 correspondence” between dependence proper-

ties of the aggregated process {X̄t} with mixing density φ(a) ∼ φ1(1−a)b, 0 <

b < α− 1 and the corresponding properties of α−stable moving average

Yt =
∞∑

j=0

cjεt−j, cj ∼ cj−β,
1

α
< β < 1

The correspondence is effected through the equality of the asymptotic self-

similarity indices:

1− b

α
=: HX̄ = HY := 1− 1

β
+

1

α

In particularly, the above correspondence between the parameters b and β is

preserved in the decay rates of the codifference and the ruin probability.

• Limits of subordinated (nonlinear) functions?

• Invertibility?
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