Stein's method and weak convergence on Wiener space

Giovanni PECCATI (LSTA - Paris VI)

January 14, 2008

Main subject: two joint papers with I. Nourdin (Paris VI)

"Stein's method on Wiener chaos" (ArXiv, December 2007)

"Non-central convergence of multiple integrals" (ArXiv, September 2007)

Framework: convergence in distribution and explicit **Berry-Esseen type** bounds for sequences of functionals of general Gaussian fields.

Principal aim of the talk: to describe an ongoing **smooth transition** from the "method of moments and cumulants" (see Breuer, Major, Giraitis, Surgailis, Chambers, Slud... $70s - 80s$ to "Stein's method" (see Stein 1972). This transition starts with some earlier papers by Nualart and Peccati (2005) and Peccati and Tudor (2005). Crucial step: connection with Malliavin calculus (Nualart and Ortiz-Latorre (2007), Nourdin and Peccati (2007)).

The transition is "smooth", since Stein's method allows to **recover bounds** in terms of the same combinatorial expressions (based, e.g., on "connected non-flat diagrams") upon which the method of cumulants is built.

THE SETUP

- We consider a real-valued, centered Gaussian field $G = \{G(x) : x \in \mathfrak{X}\}\$ $(X \cap X)$ can be the real line, the sphere, a Hilbert space...).
- \bullet We denote by $L^2 \left(G \right) \, = \, L^2 \left(\sigma \left(G \right) , \mathbf{P} \right)$ the space of square-integrable functionals of G .

Remark: The most general situation is that of an isonormal Gaussian process. In this case, $\mathfrak X$ is a Hilbert space, and

$$
\mathbf{E}[G(x) G(y)] = \langle x, y \rangle_{\mathfrak{X}} \quad (\text{ = inner product on } \mathfrak{X}).
$$

WIENER CHAOS

For $q \geq 1$ we denote by $\mathcal{H}_q = \mathcal{H}_q(G)$ the qth Wiener chaos associated with G , that is, \mathcal{H}_q is the L^2 -closed space generated by r.v.'s of the type

 $\mathbb{H}_q\left(G\left(x_1\right),...,G\left(x_m\right)\right)$, $\quad (x_1,...,x_m)\in \mathfrak{X}^m$,

where \mathbb{H}_q is a generalized Hermite polynomial of degree q, in m variables.

• One has
$$
L^2(G) = \bigoplus \mathcal{H}_q
$$
.

• For every $q \ge 1$, one has that $Y \in \mathcal{H}_q$ if, and only if,

$$
Y=I_{q}\left(f\right) ,
$$

where f is some (unique) symmetric kernel, and I_q is a **multiple Wiener-Itô integral** of order q .

PROBLEMS (One-dimensional Gaussian Approximations)

Let $N \sim \mathbf{N}(0, 1)$ be a standard Gaussian random variable. Let $\{F_n : n \geq 1\} \in$ $L^2(G)$ be a centered sequence such that $\mathbf{E}\left(\right)$ F_n^2 \bar{n} $\overline{ }$ $\rightarrow 1.$

Problem 1: Find **conditions** to have that, as $n \to \infty$,

$$
F_n \stackrel{\mathbf{LAW}}{\longrightarrow} N.
$$

Problem II: Estimate explicitly the **distance** between the laws of F_n and N . For instance, find conditions for the existence of some $\varphi(n) \searrow 0$ such that

$$
\sup_{z} |\mathbf{P}[F_n \leq z] - \mathbf{P}[N \leq z]| \leq \varphi(n)
$$

 $(i.e., find effective bounds on the **Kolmogorov distance** in CLTs).$

THE METHOD OF MOMENTS AND CUMULANTS (Breuer and Major (1983), Giraitis and Surgailis (1985), Chambers and Slud (1989),...)

- Write F_n in its "chaotic form", i.e. $F_n = \sum$ $q{\geq}1$ Iq $\overline{1}$ f_a^n $\overset{.}{q}$ $\overline{ }$:
- $\bullet\,$ For every $q,$ prove that $\mathbf{E}[I_q\,\big($ f_a^n $\overset{.}{q}$ $\sqrt{2}$ $]\rightarrow \sigma_q^2>0$, and show by the method of moments that I_q $\overline{1}$ f_a^n $\overset{.}{q}$ \setminus LAW $\stackrel{\mathbf{A} \mathbf{v}}{\rightarrow} N$ $\left(0,\sigma_{q}^{2}\right)$ $\overline{ }$:
- $\bullet\,$ Prove asymptotic independence of I_q $\overline{1}$ f_a^n $\overset{.}{q}$ $\overline{ }$, $I_{q'}$ $\overline{1}$ $f_{\alpha'}^n$ q^{\prime} $\overline{ }$, $q \neq q'$.
- \bullet Use L^2 -approximation arguments to deduce that F_n LAW $\stackrel{\bf AVV}{\rightarrow} N$ $(0,1)$ $(\text{\rm NB}\,$: $\sum_{q}\sigma_q^2=1$).

 $\operatorname{\mathsf{Crucial}}$ part: prove that I_q $\overline{1}$ f_a^n $\overset{.}{q}$ \setminus LAW $\stackrel{\text{av}}{\rightarrow} N$ $\left(0,\sigma_{q}^{2}\right)$ $\overline{ }$ by showing that χ_k $\sqrt{ }$ I_{q} $\sqrt{ }$ f_a^n $\left(\begin{matrix} \alpha\ m\ q \end{matrix} \right) \rightarrow \mathsf{0}, \quad$ for every $k \geq 3 \quad (\chi_k = k\mathsf{th} \,\, \mathrm{cumulant}).$

The quantity χ_k $\overline{1}$ I_q $\overline{1}$ f_a^n $\binom{m}{q} \big)$ is assessed by means of **diagram formulae**. Idea: (1) Isomorphism between \mathcal{H}_q and a space of symmetric functions, (2) Use multiplication formulae and Leonov-Shyryaev representation of cumulants.

No information on upper bounds for the Kolmogorov distance.

Recent uses of this or related methods: D. Marinucci (2007), about convergence of the angular bispectrum for spherical Gaussian fields; Ginovyan and Sahakyan (2007), on quadratic functionals of stationary processes.

THEOREM: NUALART AND PECCATI (AoP, 2005)

Let $F_n = I_q(f_n)$, $n \geq 1$, be a sequence of multiple integrals such that $\mathbf{E}\left(\right)$ F_n^2 \bar{n} $\overline{ }$ \rightarrow 1. Then, the following are equivalent:

1.
$$
F_n \stackrel{\mathbf{LAW}}{\longrightarrow} N \sim \mathbf{N}(0,1)
$$

$$
2. \mathbf{E}\left(F_n^4\right) \longrightarrow 3
$$

3. for every $r=1,...,q-1$, one has $||f_n \otimes_r f_n|| \to$ 0 $(f_n \otimes_r f_n$ is the r th contraction of the kernel f_n).

Comments:

- For instance if $q=$ 2, $r=1$ and $\mathfrak{X}=L^{2}\left(\left[0,1\right] \right)$

$$
f\otimes_1 f(x,y)=\int_0^1 f(x,z)\,f(y,z)\,dz.
$$

- Drastic simplification of the method of moments.
- The connection between moments and contractions comes from the formula

$$
\chi_{4}(I_{q}(f)) = \sum_{r=1}^{q-1} \left\{ A_{q,r} ||f \otimes_{r} f||^{2} + B_{q,r} \left\| \widetilde{f \otimes_{r} f} \right\|^{2} \right\},\,
$$

 \sim = symmetrization; $A_{q,r}, B_{q,r}$ = universal combinatorial coefficients.

- One can prove

$$
\sum_{r=1}^{q-1} A_{q,r} ||f \otimes_r f||^2 = \sum \{ \text{circular diagrams with 4 levels} \}.
$$

- A typical circular diagram with 4 levels (for $q=3$) has the form

- Still no information on bounds.

THEOREM: PECCATI AND TUDOR (Séminaire, 2005)

If

$$
I_q(f_n) \xrightarrow{\text{LAW}} N\left(0, \sigma_1^2\right), \text{ and } I_p\left(g_n\right) \xrightarrow{\text{LAW}} N\left(0, \sigma_2^2\right),
$$

and
$$
EI_q\left(f_n\right)I_p\left(g_n\right) \to R, \text{ then}
$$

$$
\left(I_q\left(f_n\right), I_p\left(g_n\right)\right) \xrightarrow{\text{LAW}} N_2\left(0, \begin{bmatrix} \sigma_1^2 & R \\ R & \sigma_2^2 \end{bmatrix}\right).
$$

Comment: automatic asymptotic independence of multiple integrals of different orders.

 \vec{R} σ_2^2

Several applications, e.g.: Fractional linear differential equations (Neuenkirch and Nourdin, 2007); High-resolution limit theorems on homogeneous spaces (Marinucci and Peccati, 2007ab); Self-intersection local times of fractional Brownian motion (Hu and Nualart, 2006); Power variations of iterated Brownian motion (Nourdin and Peccati, 2007c), Estimation of selfsimilarity orders (Tudor and Viens, 2007).....

Extension to stable convergence: Peccati and Taqqu, 2007; Nourdin and Nualart, 2008.

ENTERS MALLIAVIN CALCULUS

 $G = \{G(h) : h \in \mathfrak{X}\}\,$, $\mathfrak X$ is a Hilbert space.

Recall that the **derivative operator** D is defined on smooth functionals $F =$ $f(G(h_1),...,G(h_m))$ as follows

$$
Df(G(h_1),...,G(h_m)) = \sum_{i=1}^{m} \frac{\partial}{\partial x_i} f(G(h_1),...,G(h_m)) h_i \in L^2(\mathfrak{X}, P).
$$

Write $\mathbb{D}^{1,2}$ for the **domain** of $D.$ Write δ for the <code>Skorohod integral</code> operator.

Recall the **integration by parts formula**: $\forall F \in \mathbb{D}^{1,2}, \, \forall u \in \textbf{dom}\left(\delta\right)$

$$
\mathbf{E}(\delta(u) F) = \mathbf{E}(\langle u, DF \rangle_{\mathfrak{X}}).
$$

THEOREM: NUALART AND ORTIZ-LATORRE (SPA, 2008)

Let $F_n = I_q(f_n)$, $n \geq 1$, be a sequence of multiple integrals such that $\mathbf{E}\left(\right)$ F_n^2 \overline{n} $\overline{ }$ $\rightarrow 1.$ Then, the following are equivalent:

1.
$$
F_n \stackrel{\mathbf{LAW}}{\longrightarrow} N \sim \mathbf{N}(0,1)
$$

2.
$$
\frac{1}{q} ||DF_n||^2_{\mathfrak{X}} \longrightarrow 1
$$
 in L^2 .

Comments:

- The proof is based on the fact that the characteristic function $\lambda \mapsto \psi(\lambda) = 0$ $\mathrm{E}e^{i\lambda N}$ verifies the equation

$$
\lambda\psi\left(\lambda\right)+\psi'\left(\lambda\right)=0.
$$

- A crucial tool is the integration by parts formula, giving: for every λ

$$
\mathbf{E}\left[I_q\left(f_n\right)\exp\left\{i\lambda I_q\left(f_n\right)\right\}\right]=i\lambda\mathbf{E}\left(\frac{1}{q}\|DI_q\left(f_n\right)\|_{\mathfrak{X}}^2\exp\left\{i\lambda I_q\left(f_n\right)\right\}\right).
$$

- One can prove that

$$
\mathbf{E}\left(\frac{1}{q}||DI_{q}(f_{n})||_{\mathfrak{X}}^{2}-1\right)^{2} \leq \ cst. \times \sum_{r=1}^{q-1}||f_{n}\otimes_{r}f_{n}||^{2}
$$

$$
\approx \sum \{ \text{circular diagrams with 4 levels} \}
$$

$$
\approx \chi_{4}(I_{q}(f_{n})).
$$

- No bounds, e.g. on the Kolmogorov distance between the laws of $I_q(f_n)$ and N.

THEOREM: NOURDIN AND PECCATI (Preprint, 2007)

(Indeed, for every Gamma law)

Let $F_n = I_q(f_n)$, $n \geq 1$, be a sequence of multiple integrals such that $\mathbf{E}\left(\right)$ F_n^2 \overline{n} $\overline{ }$ \rightarrow 2. Then, the following are equivalent:

1.
$$
F_n \xrightarrow{\text{LAW}} N^2 - 1 \sim \text{Chi-squared (centered)}
$$

$$
2. \ \frac{1}{q} \left\|D F_n\right\|_{\mathfrak{X}}^2 - 2 \left(1+F_n\right) \longrightarrow 0 \ \text{in} \ L^2.
$$

$$
3. \mathbf{E}\left(F_n^4\right) - 12\mathbf{E}\left(F_n^3\right) \rightarrow -36 = \mathbf{E}\left(N^2-1\right)^4 - 12\mathbf{E}\left(N^2-1\right)^3.
$$

Comments

- Another drastic simplification of the method of moments, but no information on bounds.
- Also: multi-dimensional results.
- The techniques are based on Malliavin calculus and on a differential operator characterizing the Fourier transform of the law of $N^2 - 1$.
- The use of characterizing differential operators is at the very heart of Stein's method.

STEIN'S METHOD IN A NUTSHELL (Gaussian approximations in the Kolmogorov distance; Stein 1972, 1986)

• Stein Lemma: a random variable Z has a standard Gaussian $N(0, 1)$ distribution if, and only if, for every smooth f

$$
\mathbf{E}\left[f'(Z)-Zf(Z)\right]=0.
$$

 \bullet Heuristically, for every random variable X , one expects that, if

$$
\mathbf{E}\left[f^{\prime}\left(X\right)-Xf\left(X\right)\right]
$$

is close to zero for 'many' functions f , then X has a distribution which is close to Gaussian.

 $\bullet\,$ For every fixed $y\in\mathbb{R},$ select a solution f_y to the $\underline{\text{Stein}}$'s equation $(N\sim\,$ $\mathbf{N}\left(0,1\right))$

$$
\mathbf{1}\left(x\leq y\right)-\mathbf{P}\left(N\leq y\right)=f^{\prime}\left(x\right)-xf\left(x\right),\quad x\in\mathbb{R},
$$

which is bounded by 1 and such that $\begin{matrix} \end{matrix}$ $\left|f_{y}^{\prime}\right\rangle$ $\overline{\mathbf{r}}$ $\Big|\leq 1.$

• Deduce that, for every random variable X ,

$$
\sup_{y \in \mathbb{R}} |P(X \le y) - P(N \le y)| \le \sup_{f} \left| E\left[f'(X) - Xf(X)\right] \right|,
$$

where the *f*'s are bounded by 1, piecewise differentiable and such that
 $|f'| \le 1$.

CRUCIAL IDEA (NOURDIN AND PECCATI, Preprint 2007)

For every centered $F\in \mathbb{D}^{1,2}$, one can estimate expressions such as

$$
\mathbf{E}\left[f^{\prime }\left(F\right) -Ff\left(F\right) \right] ,
$$

by integrating by parts, yielding

$$
\mathbf{E}\left[f'(F)-Ff(F)\right]=\mathbf{E}\left[f'(F)-\left\langle DF,-DL^{-1}F\right\rangle _{\mathfrak{X}}\times f'(F)\right],
$$

where L^{-1} is the inverse of the generator of the Ornstein-Uhlenbeck semigroup. Therefore,

$$
\left|\mathbf{E}\left[f'(F)-Ff\left(F\right)\right]\right|\leq\sqrt{\mathbf{E}\left[f'(F)^2\right]}\times\sqrt{\mathbf{E}\left[\left(1-\left\langle DF,-DL^{-1}F\right\rangle_\mathfrak{X}\right)^2\right]}
$$

The operator L^{-1} acts on centered random variables of the type

$$
F=\sum_{q\geq 1}I_q(f_q),
$$

as follows

$$
L^{-1}F = \sum_{q\geq 1} -\frac{I_q(f_q)}{q}.
$$

THE CASE OF MULTIPLE INTEGRALS

• When applied to
$$
F = I_q(f)
$$
, one has

$$
\left\langle DF, -DL^{-1}F \right\rangle_{\mathfrak{X}} = \frac{1}{q} \| DF \|_{\mathfrak{X}}^2,
$$

and therefore

$$
\left|\mathbf{E}\left[f'(F)-Ff(F)\right]\right|\leq\sqrt{\mathbf{E}\left[f'(F)^2\right]}\times\sqrt{\mathbf{E}\left[\left(1-\frac{1}{q}\|DF\|_{\mathcal{X}}^2\right)^2\right]}.
$$

 \bullet Thanks to Stein's method one gets (N standard Gaussian)

$$
\sup_{y\in\mathbb{R}}\left|\mathbf{P}\left(I_q\left(f\right)\leq y\right)-\mathbf{P}\left(N\leq y\right)\right|\leq\sqrt{\mathbf{E}\left[\left(1-\frac{1}{q}\left\|D I_q\left(f\right)\right\|_{\mathfrak{X}}^2\right)^2\right]},
$$

which gives explicit bounds and an alternate proof of Nualart and Ortiz-Latorre's crucial implication.

 \bullet One can explicitly represent ${\bf E}$ $\Bigl\lVert \left(1-\frac{1}{q}\left\lVert DI_{q}\left(f\right)\right\rVert_{\mathfrak{X}}^{2}\right.$ \mathfrak{X} $\left\langle \right.$ ²] by means of isometry and multiplication formulae.

• One can prove that

$$
\mathbf{E}\left[\left(1-\frac{1}{q}\|DI_q\left(f\right)\|_{\mathfrak{X}}^2\right)^2\right] \leq \left\{1-\mathbf{E}\left(I_q\left(f\right)^2\right)\right\}^2 + \sum_{r=1}^{q-1} A_{r,q} \|f \otimes_r f\|^2.
$$

This yields:

$$
\sup_{y \in \mathbb{R}} |P(I_q(f) \leq y) - P(N \leq y)|
$$
\n
$$
\leq \sqrt{\left\{1 - \mathbf{E}\left(I_q(f)^2\right)\right\}^2 + \sum_{r=1}^{q-1} A_{r,q} ||f \otimes_r f||^2}
$$
\n
$$
\approx \sqrt{\left\{1 - \mathbf{E}\left(I_q(f)^2\right)\right\}^2 + \chi_4(I_q(f))}.
$$

- In the Gamma case, one uses the fact that Z $\frac{\rm LAW}{\rm \equiv}$ N^2-1 if, and only if,

$$
\mathbf{E}\left[Zf(Z)-2(1+Z)f'(Z)\right]=0.
$$

One therefore deduces bounds for Gamma approximations, but with more ad hoc distances. This is due to the irregularity of the solutions to the Stein equation in the Gamma case.

- The previous result implies that Kolmogorov distances on Wiener space can be estimated by the method of moments (even better than that: they basically depend on the first two even moments of multiple integrals).

- Same results for: Total variation distance, Wasserstein distance, bounded Wasserstein distance. Consequence: all these distances metrize the convergence to Gaussian on a fixed Wiener chaos.
- One can use these computations to study the approximations of r.v.'s with a possibly infinite chaotic decomposition.

Application: Berry-Esseen bounds in the Breuer-Major-Giraitis-Surgailis CLT.

Recall the classic $\bf{Berry\text{-}Eseen~theorem:}$ Let $\{X_i : i \geq 1\}$ be a sequence of i.i.d. random variables such that $\mathbf{E} X_i = \mathbf{0},\ \mathbf{E} \left| X_i \right|$ $3 = \rho < \infty$, $EX_i^2 = 1$. Define $S_n = \frac{1}{\sqrt{2}}$ \overline{n} $\sum_{i=1}^n X_i$. Then,

$$
\sup_{z \in \mathbb{R}} |\mathbf{P}(S_n \leq z) - \mathbf{P}(N \leq z)| \leq \frac{3\rho}{\sqrt{n}},
$$

where $N \sim N(0, 1)$.

Let $\left\{ B_{t}^{H}:t\geq\mathbf{0}\right.$ $\overline{\mathfrak{l}}$ be a fractional Brownian motion of order $H \in (0, 1)$. In particular,

$$
\mathbf{E}\left(B_t^H B_s^H\right) = \frac{1}{2} \left(s^{2H} + t^{2H} - |s - t|^{2H}\right).
$$

Recall the classic result (Breuer, Major, Giraitis, Surgailis): For $q\geq 2$, let \mathbf{H}_{q} be the q th Hermite polynomial. Then, for every $H<\frac{2q-1}{2q}$ there exists an explicit constant $\sigma_H > 0$ such that

$$
S_n^H = \frac{1}{\sigma_H \sqrt{n}} \sum_{i=1}^n \mathbf{H}_q \left(B_{i+1}^H - B_i^H \right) \stackrel{\mathbf{LAW}}{\longrightarrow} N\left(0,1\right).
$$

Extension to functions with arbitrary **Hermite rank**.

THEOREM (NOURDIN AND PECCATI, Preprint 2007)

By embedding B^H into an isonormal process (see e.g. Pipiras and Taqqu (2003)) and by applying the previous theory, one obtains that

$$
\sup_{z \in \mathbb{R}} \left| \mathbf{P} \left(S_n^H \le z \right) - \mathbf{P} \left(N \le z \right) \right| \le c_H \times \left\{ \begin{array}{ll} n^{-1/2}, & \text{if } H \le 1/2 \\ n^{H-1}, & \text{if } H \in \left(\frac{1}{2}, \frac{2q-3}{2q-2} \right] \\ n^{qH-q+\frac{1}{2}}, & \text{if } H \in \left(\frac{2q-3}{2q-2}, \frac{2q-1}{2q} \right) \end{array} \right.
$$

 ${\sf NB:}$ for $H=1/2$ (Brownian motion), the speed is always $n^{-1/2}$ ($=$ Berry-Esseen).

For instance, for
$$
q = 2
$$
,

Although there exist mixing-type characterizations of fBm (Picard, 2007), the use of mixing techniques to obtain our bounds seems mostly unfeasible. This is due to the fact that, for values of H and q outside the range of our theorem, a non-CLT holds (e.g., towards Rosenblatt laws).

Other applications: generalizations of results by Chatterjee (2007), connected to fluctuations of eigenvalues of random matrices and Poincaré inequalities.

Related recent works:

Privault and Reveillac, 2007;

Hsu, 2003;

Decreusefond and Savy, 2007 (Poisson)