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Main subject: two joint papers with I. Nourdin (Paris VI)

�Stein�s method on Wiener chaos� (ArXiv, December 2007)

�Non-central convergence of multiple integrals� (ArXiv, September 2007)



Framework: convergence in distribution and explicit Berry-Esseen type
bounds for sequences of functionals of general Gaussian �elds.

Principal aim of the talk: to describe an ongoing smooth transition from
the �method of moments and cumulants�(see Breuer, Major, Giraitis, Sur-
gailis, Chambers, Slud... �70s � �80s) to �Stein�s method� (see Stein 1972).
This transition starts with some earlier papers by Nualart and Peccati (2005)
and Peccati and Tudor (2005). Crucial step: connection with Malliavin cal-
culus (Nualart and Ortiz-Latorre (2007), Nourdin and Peccati (2007)).

The transition is �smooth�, since Stein�s method allows to recover bounds
in terms of the same combinatorial expressions (based, e.g., on �connected
non-�at diagrams�) upon which the method of cumulants is built.



THE SETUP

� We consider a real-valued, centered Gaussian �eldG = fG (x) : x 2 Xg
(X can be the real line, the sphere, a Hilbert space...).

� We denote by L2 (G) = L2 (� (G) ;P) the space of square-integrable
functionals of G.

Remark: The most general situation is that of an isonormal Gaussian process.
In this case, X is a Hilbert space, and

E[G (x)G (y)] = hx; yiX ( = inner product on X).



WIENER CHAOS

For q � 1 we denote by Hq = Hq (G) the qth Wiener chaos associated with
G, that is, Hq is the L2-closed space generated by r.v.�s of the type

Hq (G (x1) ; :::; G (xm)) , (x1; :::; xm) 2 Xm,
where Hq is a generalized Hermite polynomial of degree q, in m variables.

� One has L2 (G) =
M
Hq.

� For every q � 1, one has that Y 2 Hq if, and only if,

Y = Iq (f) ,

where f is some (unique) symmetric kernel, and Iq is a multiple Wiener-
Itô integral of order q.



PROBLEMS (One-dimensional Gaussian Approximations)

LetN � N (0; 1) be a standard Gaussian random variable. Let fFn : n � 1g 2
L2 (G) be a centered sequence such that E

�
F 2n
�
! 1:

Problem I: Find conditions to have that, as n!1,

Fn
LAW�! N:

Problem II: Estimate explicitly the distance between the laws of Fn and N .
For instance, �nd conditions for the existence of some ' (n)& 0 such that

sup
z
jP [Fn � z]�P [N � z]j � ' (n)

(i.e., �nd e¤ective bounds on the Kolmogorov distance in CLTs).



THE METHOD OF MOMENTS AND CUMULANTS (Breuer and Major
(1983), Giraitis and Surgailis (1985), Chambers and Slud (1989),...)

� Write Fn in its �chaotic form�, i.e. Fn =
P
q�1 Iq

�
fnq
�
:

� For every q, prove that E[Iq
�
fnq
�2
]! �2q > 0, and show by the method

of moments that Iq
�
fnq
�
LAW! N

�
0; �2q

�
:

� Prove asymptotic independence of Iq
�
fnq
�
, Iq0

�
fnq0
�
, q 6= q0.

� Use L2-approximation arguments to deduce that Fn LAW! N (0; 1) (NB :P
q �

2
q = 1).



Crucial part: prove that Iq
�
fnq
�
LAW! N

�
0; �2q

�
by showing that

�k
�
Iq
�
fnq
��
! 0, for every k � 3 (�k = kth cumulant).

The quantity �k
�
Iq
�
fnq
��
is assessed by means of diagram formulae. Idea:

(1) Isomorphism between Hq and a space of symmetric functions, (2) Use
multiplication formulae and Leonov-Shyryaev representation of cumulants.

No information on upper bounds for the Kolmogorov distance.

Recent uses of this or related methods: D. Marinucci (2007), about con-
vergence of the angular bispectrum for spherical Gaussian �elds; Ginovyan and
Sahakyan (2007), on quadratic functionals of stationary processes.



THEOREM: NUALART AND PECCATI (AoP, 2005)

Let Fn = Iq (fn), n � 1, be a sequence of multiple integrals such that
E
�
F 2n
�
! 1. Then, the following are equivalent:

1. Fn
LAW�! N � N (0; 1)

2. E
�
F 4n
�
�! 3

3. for every r = 1; :::; q� 1, one has kfn 
r fnk ! 0 (fn
r fn is the rth
contraction of the kernel fn).



Comments:

- For instance if q = 2, r = 1 and X = L2 ([0; 1])

f 
1 f (x; y) =
Z 1
0
f (x; z) f (y; z) dz.

- Drastic simpli�cation of the method of moments.

- The connection between moments and contractions comes from the formula

�4 (Iq (f)) =
q�1X
r=1

(
Aq;r kf 
r fk2 +Bq;r





f̂ 
r f



2
)
;

� = symmetrization; Aq;r; Bq;r = universal combinatorial coe¢ cients.



- One can prove

q�1X
r=1

Aq;r kf 
r fk2 =
X
fcircular diagrams with 4 levelsg .

- A typical circular diagram with 4 levels (for q = 3) has the form

- Still no information on bounds.



THEOREM: PECCATI AND TUDOR (Séminaire, 2005)

If

Iq (fn)
LAW�! N

�
0; �21

�
, and Ip (gn)

LAW�! N
�
0; �22

�
;

and EIq (fn) Ip (gn)! R, then

(Iq (fn) ; Ip (gn))
LAW�! N2

 
0;

"
�21 R

R �22

#!
:

Comment: automatic asymptotic independence of multiple integrals of dif-
ferent orders.



Several applications, e.g.: Fractional linear di¤erential equations (Neuenkirch
and Nourdin, 2007); High-resolution limit theorems on homogeneous spaces
(Marinucci and Peccati, 2007ab); Self-intersection local times of fractional
Brownian motion (Hu and Nualart, 2006); Power variations of iterated
Brownian motion (Nourdin and Peccati, 2007c), Estimation of selfsimilar-
ity orders (Tudor and Viens, 2007).....

Extension to stable convergence: Peccati and Taqqu, 2007; Nourdin and
Nualart, 2008.



ENTERS MALLIAVIN CALCULUS

G = fG (h) : h 2 Xg, X is a Hilbert space.

Recall that the derivative operator D is de�ned on smooth functionals F =

f (G (h1) ; :::; G (hm)) as follows

Df (G (h1) ; :::; G (hm)) =
mX
i=1

@

@xi
f (G (h1) ; :::; G (hm))hi 2 L2 (X;P) .

Write D1;2 for the domain of D. Write � for the Skorohod integral operator.

Recall the integration by parts formula: 8F 2 D1;2, 8u 2 dom (�)

E (� (u)F ) = E (hu;DF iX) :



THEOREM: NUALART AND ORTIZ-LATORRE (SPA, 2008)

Let Fn = Iq (fn), n � 1, be a sequence of multiple integrals such that
E
�
F 2n
�
! 1. Then, the following are equivalent:

1. Fn
LAW�! N � N (0; 1)

2. 1q kDFnk
2
X �! 1 in L2.



Comments:

- The proof is based on the fact that the characteristic function � 7!  (�) =

Eei�N veri�es the equation

� (�) +  0 (�) = 0.

- A crucial tool is the integration by parts formula, giving: for every �

E [Iq (fn) exp fi�Iq (fn)g] = i�E

 
1

q
kDIq (fn)k2X exp fi�Iq (fn)g

!
:



- One can prove that

E

 
1

q
kDIq (fn)k2X � 1

!2
� cst:�

q�1X
r=1

kfn 
r fnk2

�
X
fcircular diagrams with 4 levelsg

� �4 (Iq (fn)) :

- No bounds, e.g. on the Kolmogorov distance between the laws of Iq (fn)
and N .



THEOREM: NOURDIN AND PECCATI (Preprint, 2007)

(Indeed, for every Gamma law)

Let Fn = Iq (fn), n � 1, be a sequence of multiple integrals such that
E
�
F 2n
�
! 2. Then, the following are equivalent:

1. Fn
LAW�! N2 � 1 � Chi-squared (centered)

2. 1q kDFnk
2
X � 2 (1 + Fn) �! 0 in L2.

3. E
�
F 4n
�
� 12E

�
F 3n
�
! �36 = E

�
N2 � 1

�4 � 12E �N2 � 1�3.



Comments

- Another drastic simpli�cation of the method of moments, but no information
on bounds.

- Also: multi-dimensional results.

- The techniques are based on Malliavin calculus and on a di¤erential operator
characterizing the Fourier transform of the law of N2 � 1.

- The use of characterizing di¤erential operators is at the very heart of Stein�s
method.



STEIN�S METHOD IN A NUTSHELL (Gaussian approximations in the
Kolmogorov distance; Stein 1972, 1986)

� Stein Lemma: a random variable Z has a standard Gaussian N (0; 1) dis-
tribution if, and only if, for every smooth f

E
h
f 0 (Z)� Zf (Z)

i
= 0:

� Heuristically, for every random variable X, one expects that, if

E
h
f 0 (X)�Xf (X)

i
is close to zero for �many�functions f , then X has a distribution which
is close to Gaussian.



� For every �xed y 2 R, select a solution fy to the Stein�s equation (N �
N (0; 1))

1 (x � y)�P (N � y) = f 0 (x)� xf (x) , x 2 R,

which is bounded by 1 and such that
���f 0y��� � 1.

� Deduce that, for every random variable X,

sup
y2R

jP (X � y)�P (N � y)j � sup
f

���E hf 0 (X)�Xf (X)
i��� ,

where the f�s are bounded by 1, piecewise di¤erentiable and such that��f 0�� � 1.



CRUCIAL IDEA (NOURDIN AND PECCATI, Preprint 2007)

For every centered F 2 D1;2, one can estimate expressions such as

E
h
f 0 (F )� Ff (F )

i
,

by integrating by parts, yielding

E
h
f 0 (F )� Ff (F )

i
= E

h
f 0 (F )�

D
DF;�DL�1F

E
X
� f 0 (F )

i
,

where L�1 is the inverse of the generator of the Ornstein-Uhlenbeck
semigroup. Therefore,

���E hf 0 (F )� Ff (F )
i��� � r

E
h
f 0 (F )2

i
�
s
E
��
1�

D
DF;�DL�1F

E
X

�2�



The operator L�1 acts on centered random variables of the type

F =
X
q�1

Iq (fq) ,

as follows

L�1F =
X
q�1

�Iq (fq)
q

:



THE CASE OF MULTIPLE INTEGRALS

� When applied to F = Iq (f) , one has

D
DF;�DL�1F

E
X
=
1

q
kDFk2X ,

and therefore

���E hf 0 (F )� Ff (F )
i��� � r

E
h
f 0 (F )2

i
�

vuuutE
24 1� 1

q
kDFk2X

!235:



� Thanks to Stein�s method one gets (N standard Gaussian)

sup
y2R

jP (Iq (f) � y)�P (N � y)j �

vuuutE
24 1� 1

q
kDIq (f)k2X

!235,
which gives explicit bounds and an alternate proof of Nualart and Ortiz-
Latorre�s crucial implication.

� One can explicitly represent E
��
1� 1

q kDIq (f)k
2
X

�2�
by means of isom-

etry and multiplication formulae.



� One can prove that

E

24 1� 1
q
kDIq (f)k2X

!235 �
n
1� E

�
Iq (f)

2
�o2

+
q�1X
r=1

Ar;q kf 
r fk2 :

This yields:

sup
y2R

jP (Iq (f) � y)�P (N � y)j

�

vuuutn1� E �Iq (f)2�o2 + q�1X
r=1

Ar;q kf 
r fk2

�
rn
1� E

�
Iq (f)

2
�o2

+ �4 (Iq (f)):



- In the Gamma case, one uses the fact that Z LAW
= N2 � 1 if, and only if,

E
h
Zf (Z)� 2 (1 + Z) f 0 (Z)

i
= 0:

One therefore deduces bounds for Gamma approximations, but with more
ad hoc distances. This is due to the irregularity of the solutions to the
Stein equation in the Gamma case.

- The previous result implies that Kolmogorov distances on Wiener space can
be estimated by the method of moments (even better than that: they
basically depend on the �rst two even moments of multiple integrals).



- Same results for: Total variation distance,Wasserstein distance, bounded
Wasserstein distance. Consequence: all these distances metrize the con-
vergence to Gaussian on a �xed Wiener chaos.

- One can use these computations to study the approximations of r.v.�s with a
possibly in�nite chaotic decomposition.



Application: Berry-Esseen bounds in the Breuer-Major-Giraitis-Surgailis
CLT.

Recall the classic Berry-Esseen theorem: Let fXi : i � 1g be a sequence of
i.i.d. random variables such that EXi = 0, E jXij3 = � < 1, EX2i = 1.
De�ne Sn = 1p

n

Pn
i=1Xi. Then,

sup
z2R

jP (Sn � z)�P (N � z)j � 3�
p
n
,

where N � N (0; 1).



Let
n
BHt : t � 0

o
be a fractional Brownian motion of order H 2 (0; 1). In

particular,

E
�
BHt B

H
s

�
=
1

2

�
s2H + t2H � js� tj2H

�
.

Recall the classic result (Breuer, Major, Giraitis, Surgailis): For q � 2, let Hq
be the qth Hermite polynomial. Then, for every H < 2q�1

2q there exists an
explicit constant �H > 0 such that

SHn =
1

�H
p
n

nX
i=1

Hq
�
BHi+1 �BHi

�
LAW�! N (0; 1) :

Extension to functions with arbitrary Hermite rank.



THEOREM (NOURDIN AND PECCATI, Preprint 2007)

By embedding BH into an isonormal process (see e.g. Pipiras and Taqqu
(2003)) and by applying the previous theory, one obtains that

sup
z2R

���P �SHn � z
�
�P (N � z)

��� � cH�

8>>>>>>>><>>>>>>>>:

n�1=2, if H � 1=2

nH�1; if H 2 (12;
2q�3
2q�2]

nqH�q+
1
2; if H 2 (2q�32q�2;

2q�1
2q )

NB: for H = 1=2 (Brownian motion), the speed is always n�1=2 ( = Berry-
Esseen).



For instance, for q = 2,



Although there exist mixing-type characterizations of fBm (Picard, 2007), the
use of mixing techniques to obtain our bounds seems mostly unfeasible.
This is due to the fact that, for values of H and q outside the range of our
theorem, a non-CLT holds (e.g., towards Rosenblatt laws).

Other applications: generalizations of results by Chatterjee (2007), connected
to �uctuations of eigenvalues of random matrices and Poincaré inequalities.

Related recent works:

Privault and Reveillac, 2007;

Hsu, 2003;

Decreusefond and Savy, 2007 (Poisson)


