A NEW CRITERION TO EVALUATE THE STABILITY OF SOM
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Abstract — A new stability criterion (ys,) is proposed to evaluate the reliability of SOM. This

criterion estimates the confidence that we can have on the topological neighborhood relationships
shown on a map. This indicator is non graphical and gives more accurate information on the
instability of SOM than the existing stabilities histograms methods. We show that SOM present
particular statistical properties that are used with the ys, criterion to determine the instability

values of unorganized maps. This criterion is tested on two databases and provides more accurate
results on the network’s geometry than the mean quantization and the mean Kohonen errors.
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1 Introduction

The main objective of SOM [1] is to map high-dimensional data onto a two-dimensional (2-D)
lattice of neural units by preserving the local neighborhood relationships of the dataset. Many
criteria have been proposed in order to choose, between several different maps, the one that best
preserves the topology of the input data, a list of such criteria can be found in [2] and [3]. Another
efficient measure is the Kohonen cost function, as stated in [4]. However, none of these criteria can
measure the reliability of the results after several learning procedures of the same dataset.

Averaging topographic errors obtained over all the maps generated can help to have a better
measure of the topology preservation for each network configuration. Yet, this measure only
indicates how local topology is preserved globally even if from one learning phase to another the
effective local topology that is preserved does not correspond to the same part of the dataset. This
problem was already raised in [5] where a stability measure was proposed. Histograms are drawn to
compare the stability of the pairs of data for a given neighborhood distance with the stability of the
pairs mapped in a random way. However this method is only graphical and several stability
histograms are needed (one for each neighborhood distance).

In this paper we show through a statistical study of the stability of unorganized maps that they
present particular properties that can be used to define a new stability criterion. This criterion can
be applied to choose, from several network configurations, the one that gives the most reliable
information on the dataset. Section 2 presents the basic concepts of the stability measure. Section 3
describes the statistical properties of unorganized maps. Section 4 introduces the new stability
criterion. Section 5 gives experimental results on the stability of two datasets. Section 6 concludes
the paper.
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2 Stability measures

The aim of a stability criterion is to study the reliability of the neighborhood relationships shown
on a map. Indeed, given two maps generated from the same dataset, with the same network
parameters and with the same topology preservation, it may be still not possible to know which one
best reflects the neighborhood relationship of two given data if the distance of these data on each
map is different. It may also be possible that neither of these two maps correctly reflects the
neighborhood relationship of these two data. Topography criteria only indicate the global topology
that is preserved on each map. Hence, it is important to know the confidence that we can have in
the neighborhood distances shown on a map.

A Stability criterion has been proposed in [5] so as to study the reliability of the topology
preservation of data in SOM over several bootstrapped learning procedures. The bootstrap
technique is used to generate a new sample of the dataset for each learning procedure in order to
take the variability of the dataset into account. The stability criterion is based on a neighborhood

distance function 1“;’1 X () , defined as follows:
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where b refers to a bootstrapped sample, W is the affectation function which finds the neuron that
best matches the input vector Z and (k,,k,)e N? are the data numbers of the data for which the
neighborhood distance & is calculated. This function evaluates for each pair of data if its
neighboring distance on the map is smaller or equal too . A stability function E(kl’kz)((x) then
gives the probability for the data Z, and Z, to be neighbors within radius o over B bootstrapped

samples. This function is defined by:
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Histograms of the stabilities E(kl,kz)(oc) over all pairs of data are then drawn for each neighborhood
distance o . A map is perfectly stable with radius o if the histogram only shows two peaks; one at
0 and one at 1. A map is unstable with radius o if the histogram is close to the one that would be
obtained in the random case (unorganized maps). The probability p(o) for two data to be
neighbors by chance with a neighborhood distance smaller or equal to o, on a map with sizes
(&,,€,), can be approximated by:

(0)= a+1)
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if the edge effects of the map are not taken into account. Hence, the stability histogram of an
unorganized map over B bootstrapped samples for each neighborhood distance o is assumed to
follow a binomial distribution with parameters B and p(ct). Thus, the stability histogram of a given
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map configuration can be compared graphically with the unorganized map stability histogram for
each neighborhood distance. This criterion is very useful since it allows the reliability of a map
configuration to be evaluated. However, the proposed method is graphical, several stability
histograms are needed (one for each neighborhood distance) and the function p(a) is only valid for

small values of o .

In the following lines, we present the 7y, criterion that gives a more accurate measure of the

stability of SOM by taking the edge effects of the maps into account. To introduce this criterion,
we need to study the statistical properties of SOM first.

3 Statistical properties of SOM

After a long and complex demonstration, we are able to show that the probability function f, (ct)

of two data to be neighbors by chance on a 2-D map with a neighborhood distance o is defined,
for e N and 0 << &2, by:

3 o=t
£y ()= #(ﬁlazmzw—wz(&wéz)) if 1Sa<g -1, )
—2(%;0‘) if & <o<E, -1

This probability function has been drawn on Fig. 1 for a map with sizes (&1 =40,&, = 200).
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Fig. 1. Probability function of two data to be neighbors by chance on a 2-D map. (a) Theoretical distribution.
(b) Experimental results after 10 000 random projections of two data.

We are also able to establish that the mean value of f, (o) is given by:

1

=@(sal £y =8+ 58,7 — 158, +106,E,° - 4), 5)

u
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and that the variation value of f, (o) can be calculated by:

Y M[ 55‘:1 &2 +10§1 &, - 80‘:1 &, +300‘:1 &2 _10()&1 ‘V;z +190‘v51 &,
_gl +10§1 +140§16§23 _33§15 _40()&14&23 +40§13 _345§13§22 +50§13§26
+ 150&13§24 _12()&12&2 + 260&12§23 _16§1J- (6)

It has to be noted that if §, =&, =&, (5) and (6) can be rewritten as:
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Moreover, if & >4, we can write:
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Finally, we can also show that the distribution function F, (o) is given by:

F, (oc)=

ﬁi [&&2 a+1) (c’;l+c’;2)(oc+3(x2+2ot3)+a2+20¢3+0L4] if 0<a<§ -1
152 )
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This distribution function has been drawn on Fig. 2 for maps with sizes (&,1 =40,¢, = 200) and is
compared to the distribution function p(a)defined in (3). On these graphics we can see that p(o)
is only valid for values of o smaller than 10. Hence, for larger values of «, it is preferable to use
the F, (o) function with the E(kl,kz)(oc) criterion. However, this criterion is graphical and several

stability histograms are needed to study a map (one for each neighborhood distance o ).
4 The vy, criterion to evaluate the stability of SOM

As stated in paragraph 2, the aim of a stability criterion is to evaluate the reliability of the
neighborhood relationships of data on a map over several learning phases. Indeed, each pair of data
has a particular neighborhood distance on a map which may be different from one learning to
another.
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Hence it is possible to draw for each pair of data, after several learning procedures, a histogram
H , (t) that shows the number of times the data were neighbors with the neighborhood distance o .

A pair of data is perfectly stable if its corresponding neighborhood distance on the map remains
unchanged over all the learning procedures, that is to say if 6y (,) =0. The value of oy () that

corresponds to an unstable pair of data, on a map with sizes (&1 ,€, ), is given by (6).

Therefore, an interesting criterion to evaluate the instability of a map is to draw a histogram
Hg (GHA (a)) that shows the number of pairs that are unstable with the value 6y (,) over all the

learning phases. However, the use of the criterion Gy (,) as an indicator of the instability of a pair

of data is too restrictive.

1
09
08
07 1
06 |
05
04 |
0,3 1
02
01

0

oL

o 2‘5 50 ?‘5 160 1 2.5 150 1';’5 200
Fig. 2. Distribution functions F, (o) and p(c) of two data to be neighbors by chance on a 2-D map with a

neighborhood distance smaller or equal to o. These functions have been drawn for maps with sizes
(&, =40,&, =200).

In fact, the Kohonen algorithm only tries to preserve the local neighborhood relationships of data.
In terms of stability this means that the smaller uy () the smaller 6y () should be. Therefore, a

(¢
better indicator of the stability of a map is to draw the histogram Hg (y) where Y:M.
l'lHA (o)
Instability histograms have been drawn on Fig.3.a for an artificial dataset of 1 000 data, that is to
say 499 500 pairs of data. A map is stable if H (y) is concentrated close to a peak in y=0. A map
is unstable if Hg (y) is close to (or located after) the peak obtained in the random case

(unorganized maps). The corresponding theoretical Y value can be calculated for a map of sizes
(£,,€,) by using (5) and (6). If §, =&, =& and £>4, y~0.47.

To obtain non graphical indicators of the stability of a map we use the 7y, criterion which
represents the maximum instability value of 50% of the most stable pairs of data. It is also possible
to use other criteria such as the 7y,,, Yg, and 7y,, criteria that represent respectively the maximum
instability values of 70%, 80% and 90% of the most stable pairs of data. The y,, and vy, criteria
have been plotted on Fig. 3.b.
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(a) (b)
Fig. 3. Experimental instability histograms H (y) that show the number of pairs of data that were instable
for eachy value. An artificial dataset of 1 000 data was used. (a) The plain line corresponds to the instability
histogram computed for organized maps with sizes (Fﬂ =50,&, = 50), the dashed line refers to unorganized
maps with same sizes. (b) Cumulated representation of the instability histograms. The Y5, and 7g, criteria

have been plotted for organized maps.

5 Experimental measures of the stability

The v, criterion defined above has been applied to study the influence of map sizes on the
stability of SOM. Indeed, the choice of the right values for the parameters &, and &, is often
difficult and can modify the topology preservation of the data considerably.

Fig. 4. D1 and D2 datasets

Two artificial datasets have been considered. The first dataset (D1) represents a horseshoe
distribution and the second dataset (D2) is composed of two rings (Fig.4). Both of the datasets were
generated with 1 000 data. In order to study the influence of the map’s sizes, the parameters &, and

&, were varied with the values {10, 20, 30, 40, 50, 60, 70, 80, 90 and 100} (with &, <&,). Hence,
up to 55 map configurations have been tested with both datasets. For each configuration, the Y.,
criterion has been computed over 100 learning procedures and compared to the [ criterion that is

an average of the Kohonen cost function defined as:

730



A New Criterion to Evaluate the Stability of SOM

2
>

(12)

B, = ZZA(S(j,j*))xHZi -W|

where W, refers to the synaptic weight vector of the neuron j and j corresponds to the neuron

that best matches the input vector Z;.
13

with A@)=e T, (13)

where the T parameter was fixed to 1/ 3 of each network’s diagonal. The results obtained for the
two datasets have been plotted on Fig. 5. The first row refers to the values of W and v,

computed with D1 and the second row corresponds to the results obtained with the same criteria
and D2.
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Fig. 5. Influence of SOM sizes (&,, &,) on the Kohonen cost function ( Ug, ) and the instability criterion
(Ys0)- The dashed line on graphs (c) and (d) shows the theoretical instability value of unorganized maps.

The figures Fig. 5.a and 5.b indicate the mean topological conservation of the data for a given
geometry of the map (&, /&, ). Looking at these figures, it is not possible to choose the right
geometry for the map. On both graphics a tendency curve has been added but is not significant
since the points are very dispersed, especially on Fig. 5.a. Anyway, we can see that the geometry
that best preserves on average the topology of the data lies in an interval from 1 to 5 for the D1
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dataset and seems to be contained between 1 and 2.5 for the D2 dataset. The use of the v,

criterion gives more accurate information as shown on the last graphics (Fig. 5.c and 5.d) that
present the evolution of the instability with the network’s geometry. Indeed, we can see that the
best stability measures were obtained for size ratios &, /&, close to 3 for the D1 dataset and for
ratios close to 1.5 for the D2 dataset. The lowest instability values that were obtained for each
database are quite low: 0.1 for DI and 0.3 for D2. Hence, the 7., criterion allows the best stable
geometry for the network to be chosen. It also gives important information on the instability of the
map configurations. Indeed, the theoretical instability values of unorganized maps have been
represented in dashed line on Fig. 5.c and 5.d. Thus, it can be seen on Fig. 5.d that organized maps
with size ratios higher than 5 seem to be more stable than unorganized maps but the information
provided by these maps is globally less reliable than the information given by a network with a size
ratio of 1 that has its units positioned randomly. More generally, all the map configurations that
give an instability value higher than 0,47 have to be considered as unstable.

6 Conclusion

A new stability criterion Y, was presented to study the reliability of the neighborhood distances

shown on a map over several learning procedures of the same dataset. The mean and the standard
deviation of each pair of data is computed and used to build a histogram of the 7y instabilities. The

Yso criterion is then determined and used to evaluate the global instability of the data for a given

maps configuration. This indicator is non graphical and gives more accurate information on the
instability of SOM than the existing E(kl’kz)(oc) criterion. Moreover, it allows choosing the

geometry of the network that gives the most stable maps. We have shown that SOM present
particular statistical properties that are used with the Y., criterion to determine the instability

values of unorganized maps. Besides, we have also established that the instability value of an
organized map has to be smaller than 0,47.
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