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Abstract – Self-Organizing Maps aims ideally to group homogeneous individuals, highlighting a 
neighbourhood structure between classes in a chosen network. Recent approaches propose to 
exploit the homogeneity of the underlying classes for data completion purposes (see [2]). The aim 
of this paper is two-fold. First, we present and slightly modified two complementary approaches 
in completing the stochastic method proposed by Rousset and Maillet [11] based on bootstrap 
process for increasing the reliability of the induced neighbourhood structure and, second, we use 
the induced Robust Map of  the last approach  for data completion, generalising the results by 
Merlin and Maillet [9] with robust statistics of the moments of the series. An empirical 
illustration of this new completion scheme is finally provided based on a sample of Hedge Fund 
Net Asset Values. 
 
Key words – Self-Organizing Maps, Missing Value, Bootstrap, Constrained Randomization, 
Neighbourhood Structure  
 
 
1   Introduction 
 
The presence of missing data in the underlying time series is a recurrent problem when dealing 
with databases. Moreover, many financial databases contain missing values. For common stock 
returns measured at a low frequency, the Gaussian hypothesis is considered as a fairly good 
approximation, but financial assets such as options can introduce non-linearities and asymmetries 
to the portfolio returns. Because of the non-normality, symmetric measures of risk as the standard 
deviation cannot be applied; they do not distinguish between heavy left tails and heavy right tails. 
Hedge Fund asset return in this sense seems to be very particular. Several empirical studies 
conclude that many hedge fund index return distributions are not normal and exhibit negative 
skewness, positive excess kurtosis, and highly significant positive first-order autocorrelation (see 
[1] for instance). Thus, for the hedge fund asset class, higher moments should be taken into 
account for the analysis. The importance of higher moments of returns, especially the skewness 
and kurtosis in evaluating portfolio risk and performance has been already highlighted by a 
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number of authors (see [7]), proposing and analyzing the inclusion of higher moments in portfolio 
theory. For illustration in the following, we extracted from the large HFRTM database, a dataset of 
hedge fund net asset values composed with 149 funds on a 10-year period of 120 monthly values. 
Note that, at purpose, no missing values are contained in this database. 
 
2   Classical Self-Organized Maps Algorithm 
 
The SOM algorithm is based on the unsupervised learning principle where the training is entirely 
data-driven and no information about the input data is required (see [8]). The SOM consist of a 
network, compound in n neurons, units or code vectors organised on a regular low-dimensional 
grid. If [ ]nI ...,,2,1=  is the set of the units, the neighbourhood structure is provided by a 
neighbourhood function Λ  defined on 2I . The network state at time t is given by: 

( ) ( ) ( ) ( )[ ]tttt Tmmmm ,...,, 21=  (1) 

where ( )tim  is the T-dimensional weight vector of the unit i. 
For a given state m and input x, the winning unit ( )mx,wi  is the unit whose weight ( )mx,m

wi  is the 
closest to the input x. 
The SOM algorithm is recursively defined by the following steps: 

1. Draw randomly an observation x. 
2. Find the winning unit ( )mx,wi  also called the Best Matching Unit (noted BMU) such 

that : 
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where .  is the Euclidian norm. 
3. Once the BMU is found, the weight vectors of the SOM are updated so that the BMU 

and his neighbours are moved closer to the input vector. The SOM update rule is : 

( ) ( ) ( ) ( ) ( )[ ] IittiBMUΛtt itii ∈∀+−−=+ ,1,1 xmmm ε  (3) 

where tε  is the adaptation gain parameter, which is ]0,1[-valued, generally decreasing with time. 
The number of neurons taken into account during the weight updates depends on the 
neighbourhood function Λ  that also generally decreases with time (see [3]). 
 

 
   Source: HFRTM; Monthly Net Asset Values (12/1994-12/2004). Computations from the authors. 

Figure 1: Representation of Code Vectors on the Kohonen Maps                                          
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3   Building a Robust Map 
 
When SOM are used in classification, the algorithm is applied to the complete database that is 
generally a sample of some unknown stationary distribution. A first concern refers to the question 
of the stability of the SOM solution (specifically the neighbourhood organisation) to changes in 
the sample and to contamination by large outliers. A second concern regards the stability to the 
data presentation order and the initialisation. For limiting the dependence of the outputs to the 
original data sample and to the arbitrary choices within an algorithm, it is common to use a 
bootstrap process with a re-sampling technique (see [4]). Here, this idea is applied to the SOM 
algorithm, when estimating an empirical probability for any pair of individuals to be neighbours 
in a map. This probability is estimated by the number of times the individuals have been 
neighbours at ray 1 when running several times the same SOM algorithm using re-sampled data 
series (see Figure 2). In the following, we call P the matrix containing empirical probabilities for 
two individuals to be considered as neighbours at the end of the classification. Following Rousset 
and Maillet [11], the algorithm uses only individuals in the given re-sampled set of individuals 
(representing 60% or so of the original population). We generalize the previous approach by 
adding a drawing without replacement in the original series of most the observations (around 
60%) for each individuals. At the end of the first step, the left incomplete individuals are 
classified using computed distances to the code vectors. Thus, at each step, the table of empirical 
probabilities concerns all individuals in the original dataset, even if only a partial part of them 
have been used within the algorithm. 

 
Figure 2: Step1, bootstrap process for building the table P of the individual's empirical probabilities 
to be neighboured one-to-one. 

 
When the matrix P is built, the first step is over. In the second step (see Figure 3), the SOM 
algorithm is also executed several times, but without re-sampling. For any map Mi, we can build 
the table

i
PM , similar to previous one, in which values are 1 for a pair of neighbours and 0 for 

others. Then, using the Frobenius norm, we can compute the distance between both 
neighbourhood structures, defined respectively at the end of step 1 (re-sampling the data) and step 
2 (computing several maps with the original data). The Robust Map selected, called hereafter R-
Map for the sake of simplicity, is the one which minimizes the distance between the two 
neighbourhood structures as follows:  
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where Frob. is the Frobenius norm, that is:   
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with n the dimension of the square matrix A , whose elements are [ ] ( ) 2
, ,, Ijia ji ∈∀ . 

Comparison with the table of probabilities to be neighbours for 
individuals

Map 1 Map 2

R-map

Map p

SOM learningData Sample

 
Figure 3: Step2, get the R-Map by selecting the map whose neighbourhood structure is the closest to 
the empirical probability table P obtained at step 1. 

 
4   Robust Self-Organizing Maps with Partial Data Algorithm 
 
SOM allow for classification of data samples with multiple variables and missing values (see 
[12]). Cottrell et al. (2003) propose an adapted Kohonen algorithm that first clusters the data, and 
then replaces the missing observations (see [2]). When the SOM algorithm iterates, if a vector x 
with missing value(s) is drawn, we consider the subset NM of variables which are not missing in 
vector x. We define a norm on this subset (denotes M. ) that allows us to find the BMU (with 
previous notations):  

 ( ) ( )[ ] ( ) ( ){ }
Mi

Ii
w ttArgminttiBMU mxmx −+=+=

∈
1,1  (6) 

with: 
( )∑

∈

−=−
NMk

i,kkMi
2mxmx  

where: 
[ ]
[ ] [ ]

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

=

missing.notarethatvaluesassetnettheofsettheis
vector;codetheofvaluetheis ...,,1for,...,,1for

;vectorinput chosentheofvalue thedenotes...,,1for

,

k

thth
ki

th
k

NM
ikniTk

kTk

x
m

x

 

 
Once the Kohonen algorithm has converged, we got some cluster containing our time series. 
Cottrell et al. (2003) first propose to fill the missing values of time-series by the cross-sectional 
mean of observed values present in the cluster. It is then straightforward to adapt the previous 
algorithm with the use of the Robust Map defined in the previous sub-section. 
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5 Combining the Robust Self-Organizing Maps and a 
Constrained Randomization Procedure for Data Completion 
 
The previous approach will nevertheless affect drastically some important statistical properties of 
the over-all rebuilt dataset. In particular, higher moments (second, third and fourth centred 
moments) are neglected in the analysis. Merlin and Maillet [9] propose to combine the Self-
Organizing Maps, adapted to the presence of missing values, and the Constrained Randomization 
algorithm introduced in [13]. This last computational method - initially presented as a specific 
reshuffling data sampling technique - allows for the simulation of artificial time-series that fulfil 
given constraints, but are random in other aspects. 
 
The Figure 4 summarizes the proposed procedure for data completion. The first step starts with 
computing some empirical features of the data (moments of returns in our present case). Then, in 
parallel, the Robust Map is determined only using the non-missing values in the original dataset. 
Coordinates of Code Vectors in each unit of the Robust Map are then considered as natural first 
candidates for missing value completion (see [2]). The constrained randomization, using as 
constraints some of the empirical features of the data determined at the first step, can then start. If 
the candidate meets the constraints, then it takes the place of the missing value into the original 
data; if not, a residual noise is drawn1, and added to the previous candidates then the test for the 
constraints starts again.  

 
Figure 4: Representation of the Scheme when Mixing Robust Self-Organizing Maps and Constrained 
Randomization in Data Completion. 

In comparison with Merlin and Maillet [9], who use the (simple) sample empirical counterparts of 
the four first moments of the originals series, we use here L-moments as defined in [6] in the 
procedure of Constrained Randomization such as: 
                                                 
1 Since our application focuses on financial variables, the noise is drawn from a central Skew Student’s t-
distribution introduced in [5], with five degrees of freedom as mentioned in [10].  
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( ) ( ) ε<− FrobNMxLxL  (7) 

where Frob.  is the Frobenius norm, ( ).L  is the first four L-moments matrix, NMx  is the original 
series (without missing value), and x  the ultimate rebuilt complete dataset. 
Indeed, L-moments are some linear combinations of order statistics bi, [ ]ri ...,,1=  that have 
simple interpretations as measures of the location, dispersion and shape of the data sample. The 
have also the advantage of being more stable and less sensitive to outliers. More precisely, the 
first L-moments are defined by: 
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and with [ ]TXXX ...,,, 21  is the set of observations sorted by increasing order. 
 
The algorithm of completion thus starts by filling missing observations with the corresponding 
value of the Code Vector associated to the individuals on the non-missing value periods. If the 
new rebuilt value meets the conditions of equation (7) then the algorithm stops; otherwise a 
random alea is drawn from a Skew Student’s t-distribution with five degrees of freedom, and is 
added to the previous substitute. If the new rebuilt value meets the conditions of equation (7), 
then the algorithm stops and the database is completed; if not, another draw is made and added to 
the corresponding value of the Code Vector; and so on until the condition in equation (7) is 
fulfilled. 
 
 
6   An Empirical Illustration 
 
Table 1 hereafter summarizes the mean properties of the errors in L-moments when using 
respectively the two-step procedure and the algorithm presented by Cottrell et al. (2003) in [2] (in 
brackets) in the worst case2. As a general remark, we can note that - with no surprise - the 
addition of the Constrained Randomization procedure to the a R-Map determination procedure 
allows to recover missing values that are more in line with the statistical characterization of the 
original series. The error terms are very low in general (under 1% for the first and second L-
moments), even for unrealistic high rates of missing data.  Note also that errors in the higher L-
moments are always lower than the rate of deletion. Finally, in this example, the improvement of 
                                                 
2 The worst case corresponds to the Map obtained during the second step of the R-Map construction which 
maximizes the distance between its neighbourhood structure and the P matrix obtained during the first step 
of the R-Map construction. It allows to compare the two methodologies in the sense that the algorithm 
provide in [2] can come up with some large errors in case of bad luck.   
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the accuracy regarding the L-moments is between 80% and 90% when comparing the two-step 
procedure and the original procedure worst case. 

 
Source: HFRTM; Monthly Net Asset Values (12/1994-12/2004). Computations from the authors. 

Table 1. Mean Errors on L-moments when using respectively the adapted Robust SOM algorithm for 
Missing Values and Constrained Randomization (in bold) and the SOM algorithm for Missing 
Values presented in [2] (in brackets) – for fifty draws. 

To illustrate the accuracy of the estimation procedure, we present hereafter the non-parametric 
empirical densities of the first four L-moments for each fund obtained for fifty trials of the 
complete algorithm for a 20 % deletion level. 

l3
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l4
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l1

l4

l2

 
Source: HFRTM; Monthly Net Asset Values (12/1994-12/2004). Computations from the authors. 

Figure 5: Representation of the densities of the first four L-moments of the 149 fund returns obtained 
for a 20% deletion level after fifty draws (centred on the L-moment estimates before completion). 
Centred L-moments are on the x-axis, the different funds are on the y-axis, whilst the empirical 
estimations of the densities appear on the z-axis.  

 
 
7   Conclusion 
 
The presented method for data completion uses SOM description of the data, in a modified robust 
version presented in [11] as the starting point for a constrained randomization presented in [13] 
revised in this paper for being less sensitive to outliers and noise in the data. The main interest of 
the technique can be found in the fact that some of the important empirical features of the input 
are respected during the rebuilding process of missing observations. Specifically higher moments, 

Missing Values 
5 0.01 [0.07] 0.01 [0.06] 0.25 [1.56] 0.16 [1.23]

10 0.02 [0.11] 0.01 [0.10] 0.33 [2.45] 0.19 [2.05]
15 0.02 [0.14] 0.01 [0.15] 0.45 [3.09] 0.27 [2.58]
20 0.03 [0.16] 0.02 [0.20] 0.46 [3.44] 0.32 [3.27]
25 0.03 [0.19] 0.02 [0.24] 0.54 [4.33] 0.37 [3.63]

Mean Variances Skewness Kurtosis

Absolute Error (in %) after Completion via Robust Kohonen Maps combined with Constrained Randomization
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whose accuracy of estimations are crucial in some financial applications, are taken into account 
when substitutions. Moreover, one can easily think about some generalizations of the proposed 
algorithm, adding for instance some features under studies into the constraints of the so-called 
Constrained Randomization procedure, such as local correlation structure or tails of the density 
focuses, depending on what is the final purpose and uses of the completed database. Empirical 
applications such asset allocation or risk management could take benefit of such technique in the 
sense that their efficiency crucially depends on the reliability of the financial data characteristics. 
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