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Abstract – One of the most interesting features of self-organizing maps is the neighbourhood 
structure between classes that is highlighted by this technique. The aim of this paper is the 
presentation of two complementary methods dealing with the variability of the induced 
neighboured structure. The first method connects this variability to the complexity of the data 
intrinsic structure. A visualizing tool, called Map of Distances between Classes (MDC), is 
presented; it basically allows to extract the main information from the very large matrix of distance 
between Self-Organizing Maps’ classes. This matrix is a very accurate description of both the data 
structure and the SOM algorithm interpretation. In a presence of a complex structure, it enlarges 
the information set, linking the variability of acceptable representations to the data structure 
complexity. The second one is a stochastic method based on a bootstrap process aiming to increase 
the reliability of the induced neighbourhood structure. The resulting (robust) map, called R-Map, is 
more robust relative to the sensitivities of the outputs to the sampling method and to some of the 
learning options of the SOM’ algorithm (initialisation and order of data presentation). This method 
consists in selecting one map between a group of several solutions resulting from the same self-
organizing map algorithm, but obtained with various inputs. The R-map can be perceived as the 
map, among the group of solutions, and corresponds to the most common interpretation of the data 
set structure. 
 
Key words – Self-Organizing Maps, Robustness, Reliability, Bootstrap, Neighbourhood, 
Variability, R-Map. 
 
 
1   Introduction 
 
In the context of classification and data analysis, Self-Organizing Maps (SOM) focus on the 
neighbourhood structure between classes. Understanding how the complexity of the data can give a 
rise to several interpretations as increasing the stability of the neighbourhood structure can make 
SOM more attractive for some users who are confused due to possible various interpretations. The 
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aim of this paper is to present two complementary approaches (see [6] and [7]) to understand and 
reduce SOM’s neighbourhood structure variability. Among the many causes of such variability, the 
complexity of the data structure and the learning options of the SOM algorithm are the main ones. 
Numbers of articles dedicated to the Kohonen algorithm theory specifically focus on convergence 
(see [1] and [4]) and sensitivity to parameters (initialisation, the order of data presentation, rate of 
decrease of neighbourhood function, adaptation parameter...). In the same vain, we propose on one 
hand a visualizing tool to diagnose a link between variability and data complexity, and on the other 
hand a two-step procedure aiming to increase the reliability of SOM neighbourhood structure.  
The first approach is based on the idea that, as usual in data analysis, the simplicity of the 
representation comes into conflict with the data complexity. In the case of SOM, several 
neighbourhood organisations of classes may be acceptable. The technique presented here matches 
the analysis of the data intrinsic structure with the way SOM learns it in order to detect an eventual 
alternative organisation. For example, when the data structure is complex, the map can adjust it 
with a fold. In this case, during the learning of the algorithm may choose among a variety of folds 
that are all satisfying candidates. This situation can thus produce different “equivalent” maps when 
SOM is executed several times in a row. To connect the resulting neighbourhood structure 
variability to the complexity of the data intrinsic structure, a visualizing tool, called “Map of 
Distance between Classes” (MDC), is presented hereafter. This tool allows the extract the main 
information from a matrix of distance between classes that is rather large (for example, in the case 
of a map 10 by 10, the matrix has 10,000 values). The MDC represents both large and local 
distances relying them to the neighbourhood structure. That way, other proximities in the input 
space than those described by the map are then revealed. To conclude, the MDC is an easy tool for 
analysing or warning for some variability coming from complexity of the data. 
The second approach provides a two-step stochastic method based on a bootstrap process (see [3] 
and [2]) to increase the reliability of the underlying neighbourhood structure. The increase in 
robustness is relative to the sensitivities of the output to the sampling method and to some of the 
learning options (initialisation and order of data presentation). At the first step, a bootstrap process 
is used to build a table of probability for any pair of individuals to be compared. At the second step, 
we choose between several maps the one - called R-Map - which exhibits the greatest similarity 
with this table. Finally, the R-map gives a summary of the data and a neighbourhood structure 
between classes that is less sensitive to the sampling (due to the first step treatment), to the 
initialisation and the order of the data presentation (thanks to the second step treatment). The R-
map can also be considered as the most common interpretation of the structure among several 
SOM' solutions. We do not consider that the R-map is the “best” map concerning the interpretation. 
On the contrary, the variability of interpretations is probably rich in information, especially when 
one can compare various interpretations with the “common” one. As this second approach second 
method is generally very time-consuming, it is recommended to first use the Map of Distance 
between Classes to find eventual structural reasons for variability (in the data structure). 
The two approaches are complementary but results from different studies whose contexts are 
different, respectively biometrics typology and financial strategy. In one case, variability entails 
curiosity when, in the other case, it means a financial cost. We decided to present both approaches 
separately, in contexts where their relevance are evident. In the first part, SOM is used to deduce 
differences causes of variability from the data description (see [7] for the complete description). 
The MDC is used in the case of the human facial skin sample, that is proven to be complex by a 
comparison between several previous analyses. In the second part, SOM is used in order to classify 
financial fund evolutions. The result is satisfying as it is coherent with further complementary 
analyses, but a crucial point is linked to the variability of such analysis. In particular, the evolution 
in the time of the map – not linked with a problem of reliability of one specific representation of 
the structure – can provide further information regarding the composition of a financial market. An 
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illustration of the R-map is provided below, using a financial database containing hedge fund Net 
Asset Values (see [5] for a presentation of the database and a financial application). 
 
2 Understanding Variability of SOM’ Neighbourhood 
Structure represented by the Map of Distances between all 
Classes 
 
SOM’ algorithm, completed with its own map representation, is a very flexible method in data 
analysis and representation. Nevertheless, a high-complex data structure might be difficult to adapt. 
In particular, a simple representation can be proposed and provides a satisfying interpretation of 
result, but at the price of a non-robust result. This section aims to link the variability of the output 
with the intrinsic data structure in order to analyse or warn for it. When this link is established, the 
variability of potential acceptable representation as an extra information instead of the sign of a 
lack of robustness. To this end, we propose the Map of Distance between Classes, called MDC, that 
visualizes the data intrinsic structure overlying to the SOM interpretation. This map is the 
projection of the matrix of distances between classes on the SOM network. This matrix is a very 
accurate description of the data structure but is rather large (in the case of a map 7x7, 2401 values 
are computed). The MDC realises two objectives. From one side, it allows the use of the large 
matrix of distances for compressing redundancy and summarizing the data structure into terms such 
as proximities. From the other side, it connects this summary of the input to the SOM 
interpretation. Finally, the MDC makes the reasons of variability emerge when they refer to the 
data structure. In order to illustrate the building and the properties of the MDC, we used an 
example in the context of biometric: the typology of human facial skin proposed by the 
C.E.R.I.E.S, from a data set of 212 women, that contains the measures of the intensity of seventeen 
visual or tactile criteria (for the complete study, see [7]). Several clustering methods have shown 
the complexity of this data intrinsic structure, leading partially to different interpretations. A 
previous study proposed a new typology with SOM. In a second time, the MDC and the projection 
of the different classifications on the resulting map revealed that the typologies remoteness 
coincide with a folder on the map. So, such as the survey of skin characteristics, a data intrinsic 
structure is able to induce several interpretations and as a result several different neighbourhood 
structures when using the SOM algorithm. In this case, when it is controlled by MDC, the 
variability is positive and increase the information set needed for a quality analysis. 
The MDC uses any unit of the SOM network as a graphical display to represent a line of the 
distance matrix. Figure 1 represents the first line of the matrix of distance between classes 
(referring to centroïds distances). In each unit u, the MDC represents the distance between class C1 
and class Cu. The level of grey defines the distance (the darker, the larger). This representation 
groups distances to neighboured classes. When grouping this way, the MDC treats a part of the 
matrix redundancy as distance to neighboured centroïds are closed. Instead of reading the line of 
the distance matrix value per value, one may also consider it area per area (for example 49 values 
can be compressed in 3 area). Figure 1 shows that class 1 is close to its own neighbours, but also to 
classes 42 and 49 that was unexpected. This shows that the map makes a fold. Figure 2 visualizes 
the MDC: the box u displays the u line of the matrix such as the colour of its own unit u’ indicates 
the value of distance between classes u and u’ (the first box displays figure 1). That way, the MDC 
treats another part of redundancy (two neighboured boxes must be similar as much as distance to 
neighboured centroïds are closed) such as one can consider area of boxes. In the facial skin 
typology, Figure 2 confirms the coherence with the neighboured structure (neighboured classes 
coincide with small distances). Nevertheless, boxes 1, 8, 42 and 49 indicates a fold in the map.  
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Figure 1: Distances between class 1 
and others classes. Unit u grey level 
indicates the distance between class 1 
and class u (the darker, the higher). 
Since the distance between class 1 and 
class 49 is small, the map makes a fold. 

Figure 2: Map of Distances between all Classes. The grey 
level of unit u from box u’ indicates distance between class 
u and class u’. Box 1 corresponds to figure 14.  

 
This fold is confirmed when projecting the map centroïds on the first principal plane. In figure 3, 
centroïds are projected on the first principal plane, and are closely in connection with four of their 
eight neighbours. This way, the map network is represented in the input space as a surface that 
adjusts at best the data. Once the border of the surface is drawn, one can see once again that the 
folder is confirmed. By projecting on the map several other classifications (resulting from 
hierarchical clustering methods or segmentation), the folder is revealed: it corresponds to the area 
where are the main differences between the various typologies (see [7]). As a conclusion, when 
variability is due to data structure complexity, a solution can come from changing the SOM 
network structure (tree dimensions or a cylindrical structure…). Otherwise, the following method – 
leading to the so-called R-Map – could be a satisfying alternative way for increasing the robustness 
of the induced analysis. 
 

 
Figure 3: when joining class centroïds with four of them eight neighbours, self-organizing map 
interprets the data set structure from a flexible surface. The border of the surface is drawn. In the 
example of the skin typology the surface makes a folder that may cause variability. 
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3   A Bootstrap Scheme for Building the Table of Probabilities 
for Individuals to be Neighbours in a Map 
 
While section 2 aims to distinguish the sources of variability coming from database complexity 
from such resulting form the methodology, this section is dedicated to reducing the second one. 
When SOM' are used in classification, the algorithm is applied to the complete database that is 
generally a sample of some unknown stationary distribution. A first concern refers to the question 
of the stability of the SOM' solution (specifically the neighbourhood organisation) to changes in the 
sample. A second concern regards the stability to the data presentation order and the initialisation. 
For limiting the dependence of the outputs to the original data sample and to the arbitrary choices 
within an algorithm, it is common to use a bootstrap process with a resampling technique. Here, 
this idea is applied to the SOM algorithm, when estimating an empirical probability for any pair of 
individuals to be neighbours in a map. This probability is estimated by the number of times the 
individuals have been neighbours at ray 1 when running several times the same SOM algorithm 
using re-sampled data series (see Figure 4). In the following, we call NEIGHTboot the table 
containing empirical probabilities for two individuals to be considered as neighbours at the end of 
the classification. The algorithm uses only individuals in the given resampled set of individuals 
(representing around 60% of the original population). At the end, the individuals left are classified 
using computed distances to centroids. Thus, at each step, the table of empirical probabilities 
concerns all individuals in the original dataset even if only a part of them have been used within the 
algorithm. 

Data Sample 1 Data Sample 2

SOM learning

Data Sample p

Map 1 Map 2

NEIGHTboot

Map p

Data Sample

 
Figure 4: Step1, bootstrap process in order to build the table NEIGHTboot of individual's empirical 
probability to be neighbours one-to-one. 

 
3.2   Choosing the R-map from the Table of Individuals’ Probability to be Neighbours 
 
When the table NEIGHTboot is built, the first step is over. In the second step (see Figure 5.), the 
SOM algorithm is also executed several times, but without resampling. For any map, we can build 
the table NEIGHTmap, similar to previous one, in which values are 1 for a pair of neighbours and 0 
for others. Then, using the Frobenius norm, we can compute the distance between both 
neighbourhood structures, defined respectively at the end of step 1 (resampling the data) and step 2 
(computing several maps with the original data), as follows:  
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∑
∈
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D  (1) 

where P is the set of N² individuals pairs (i,j).  
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Comparison with the table of probabilities to be neighbours for 
individuals

Map 1 Map 2

R-map

Map p

SOM learningData Sample

 
Figure 5: Step2, selection of the R-map between p solutions of the SOM' algorithm 

 
The selected R-Map is the one among all SOM' solutions that minimises the distance D. The R-
Map indeed gives a summary of the data and of a neighbourhood structure that are less sensitive to 
the sampling (after to the first step), and to the initialisation and order of the data presentation (after 
the second step). The R-map can then be considered as the most common interpretation of the 
structure. 
 
3.1   Choosing the R-Map from the Table of Individuals’ Probability to be 
Neighbours 
 
We compare hereafter the classical 'simple' SOM method with the two-step algorithm presented in 
previous sections considering the aspect of reliability. More precisely, we first build several maps 
with the SOM algorithm as in [6] and, second, several maps leading to the definition of the R-map. 
We then compute both related tables of individual’s one-to-one probability to be neighbours: the 
NEIGHTmap (set of 'simple' SOM with no two-step bootstrap process) and the NEIGHTR-map 
(corresponding to the two-step algorithm presented above). The theoretical probabilities 1, 0 and 
UN/U correspond respectively to individuals that are respectively (surely) neighbours, (surely) not 
neighbours and neighbours (almost) by chance. The ratio UN /U corresponds to the uniform 
probability for a pair of individuals to be affected by mere chance in the UN classes belonging to U 
classes (here, UN  equals 9 at ray 1). 
As an illustration, we use a study already published, in which was proposed a robust typology of 
hedge funds based on the NAV time-evolutions, leading to a sound financial characterisation of the 
typology with external risk measures (see [6] for more details). The typology of reference (given by 
StandandPoorsTM) based on the portfolio manager declared strategies is known to be unsatisfying 
for many reasons, from the lack of transparency of proprietary well-protected strategies, data error, 
changes in situation or complex mixture of 'pure' strategies. In this context, SOM is used in order to 
clean the classification. The confidence in the neighbourhood is obviously crucial when real 
financial applications (fund of funds asset allocation and risk management) are at stake. In this 
practical example, the data set is composed with 294 funds and 67 observations of monthly NAV 
from January 1995 to September 2000. The chosen structure of the map is a six-by-six grid. 
Thirty R-maps are build each time in step one (using each time thirty samples of randomly chosen 
194 individuals amongst the possible 294 hedge funds). From these 30 R-maps, we can build a 
table of individuals’ probability to be neighboured one-to- one called as before NEIGHTR-map. From 
30 new self-organizing maps, we can build the equivalent NEIGHTmap. As an example, we present 
below Table 1, which is an abstract of three tables glued together: two tables called NEIGHTmap 
(resulting from two repeated SOM on the same original data) and one table called NEIGHTR-map 
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(resulting from the two-step procedure). Figures in Table 1 concerns empirical probabilities of pairs 
composed with individual number 1 and individuals numbered from 25 to 33. We can see that, for 
any pair, the empirical probabilities in the column R-map are closer to 1 (respectively to 0) when 
they are higher (lower) than 25.00% (i.e. UN/U = 9/36 here). This property indicates that the 
neighbourhood structure with R-maps is more reliable than with classical maps. In table 2, columns 
indicate, for any empirical probability to be neighbours, the number of pairs concerned. When we 
take into consideration the R-map, 42.14%, 16.22 %, 12.41% and 8.58% of the set of pairs of funds 
have an empirical probability to be neighbours, respectively, lower than 10.00%, greater than 80%, 
greater than 90%, equal to 100.00%. In comparison, in the case of classical maps, the respective 
values are 27.85%, 12.03%, 6.07%, 1.4% in a first case (Map 1) and 19.98%, 11.8%, 5.5% et 
1.35% in a second case (Map 2). Thus, table 2 shows as well the greater reliability of the 
neighbourhood structure in the case of R-maps when using the two-step algorithm procedure. 
 
Table 1. Empirical Probability for Funds to be Neighbours 

Couples of Funds Probability of being Neighbours (in %)
Fund #1 Fund #2 in Map 1 in Map 2 in R-map

… … … … …
1 25 1.00 0.97 1.00
1 26 0.93 0.80 0.93
1 27 0.97 0.87 1.00
1 28 0.97 0.87 1.00
1 29 0.93 0.80 0.97
1 30 0.17 0.03 0.00
1 31 0.13 0.03 0.00
1 32 0.47 0.50 0.50
1 33 0.23 0.20 0.00

… … … … …  
 

Table 2 Frequency and Cumulated Frequency of the Probability for Funds to be Neighbours 
Frequency (in pairs) Cumulative Frequency (in %)

Probability in Map 1 in Map 2 in R-map in Map 1 in Map 2 in R-map
[0.00;0.10] 24 076 17 271 36 420  27.85 19.99  42.14
[0.10;0.20[ 10 270 14 568 8 196   39.74  36.84  51.62
[0.20;0.30[ 9 664 10 184 6 698   50.92  48.63  59.37
[0.30;0.60[ 23 640 8 648 4 792   78.27  76.34  75.59
[0.60;0.70[ 5 175 6 106 3 374   84.25  83.40  79.49
[0.70;0.80[ 3 412 3 964 3 708   88.20  87.99  83.78
[0.80;0.90[ 5 448 5 150 3 288   94.50  93.95  87.59
[0.90;1.00] 4 751 5 229 10 728  100.00 100.00 100.00  

 
3.3   Remarks 
 
As partially shown in the previous illustration, R-map method reduces SOM sensitivity to three 
parameters (the sample, the data presentation order and the initialisation). A similar technique can 
include others (the adaptation parameter), but not parameters linked to the neighboured structure 
(the size of the map). As a second remark, we can indicate that the distance D used here is not 
symmetrical for neighbours and non-neighbours, as a random distribution into the U units would 
create the probability 9/U to find neighbours by chance. Such is SOM itself, as individuals defined 
as neighbours are closed in the input space, but closed individuals can belong to un-neighboured 
classes (for example when the map is folded). The use of such distance reduces more the possibility 
to find individuals that are “neighbours by chance” than “non-neighbours by chance”. As a remedy, 
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we can think about using another (quasi-symmetric) distance1. As a third remark, the R-map does 
not need more capacity to be computed than the usual Kohonen map, except that the NEIGHTboot 
table must be kept into memory. This table can be very large (N² pairs of N individuals) but can be 
reduced to a list of pairs such as the distance D would still be significant. 
 
4   Conclusion 
 
The two complementary methods presented here treat the variability of the SOM results. The first 
one separates the structural variability due to the data, and the second reduces the variability due to 
the sampling and some SOM parameters. The effects of the data structure are revealed by a map, 
called MDC, that allows to interpret the matrix of distance between all classes. The method to 
increase robustness consists in selecting one map between a group of several solutions of the same 
self-organizing map algorithm. The selected map, called R-map, can be perceived as the map, 
among the group, that corresponds to the most common interpretation of the data set structure 
(interpretation means, here, the classification and the neighbourhood structure between classes). 
The neighbourhood structure is generally more robust with R-maps than one of a randomly selected 
map among the group. This reliability concerns both sensitivities to the sampling and to some 
algorithm parameters, in particular the initialisation and the data presentation order. Finally, above 
aiming to recover robust classification, R-map selection could be a practical way to deliver to self-
organizing map users that gives the same result when they are executed several times in a row 
conditionally to the assessment from the data structure with the MDC. 
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