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Abstract – In this paper, we have applied the concepts of the self-organizing map (SOM) 
algorithm, to a routing problem  called  the vehicle routing problem with backhauls (VRPB). 
Usually SOM is based on a single map to represent data. The main contribution of this paper is to 
introduce a new architecture formed of multiple competing maps and to design the corresponding 
learning algorithm such that the Kohonen maps can be applied to a family of routing  problems. 
Those problems are known to be NP-Hard problems. We have applied these concepts to the vehicle 
routing problem (VRP) and to a variant of this problem called the VRP with Backhaul in which 
customers are of two sorts : linehaul and backhaul customers. In designing the routes for the 
various vehicles, linehaul customers should be visited first and then the backhaul customers. We 
benchmarked the performance of our approach with the most powerful meta-heuristics and 
obtained excellent results.  
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1   Introduction 
 
The VRPB problem we are considering in this paper consists of designing delivery routes to 
serve two types of customers; linehaul and backahul customers 
The following information is given: 
• The Customers. The position of the customers is provided through their coordinates in the 

Euclidean space. Along with their position, the weight or quantity of goods, of each 
customer and its type are also provided. There are two types, the backhaul and linehaul 
customers. A certain quantity of goods is delivered from the depot to the linehaul 
customers and a certain quantity of goods must be picked up from each backhaul customer 
and brought to the depot. 

• The Vehicles. A fleet of homogeneous vehicles is given. It means that the number of 
vehicles is known and the capacity of all vehicles is the same. Each vehicle can not ship a 
quantity of goods that exceeds its capacity. 

• The Depot. The location of the depot is known and its coordinates in the Euclidean space 
are given. 

 
Each vehicle starts its route from the depot visits the linehaul customers assigned to it for 
delivery and then collects the corresponding goods from each backhaul customer and bring 
them back to the depot. 
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2   SOM for Routing Problems: a Brief Review 
 
Artificial Neural networks were used to solve routing problems, namely the Traveling Salesman 
Problem (TSP). Hopfield (1995) network was among the first used to tackle this problem. In spite 
of its novelty, this approach was not practical and not competitive with exact methods and meta-
heuristics. The applications were restricted to small sized problems not exceeding 20 to 50 cities.  
The architecture that is usually used for routing problems and that was introduced by Fort (1988) is 
the ring architecture. It consists of a set of neurons placed on a deformable ring. The concept of 
tour is embedded in the ring architecture, since the location of a neuron on the ring can be 
identified with the position in the visit as shown in the figure 2. This is the most important 
advantage of this approach. The ring can be considered as a route for an ideal problem. The 
interaction of the network with its environment, here the customers and the adaptation of its 
neurons will force iteratively the ring to represent the real tour that will visit sequentially the 
customers.  
From a practical point of view, the SOFM algorithm starts by specifying the architecture of the 
network, which consists of a one ring upon which the artificial neurons are spatially distributed. 
The ring is embedded in the Euclidian space. Each neuron is identified by its position in the 
Euclidian space and its position on the ring. The Euclidian distance will be used to compare the 
positions of neurons with the positions of cities. The lateral distance will be used to define the 
distance on the ring between two neurons.  The lateral distance between any two neurons is defined 
to be the smallest number of neurons separating them plus one. In the first step, a customer is 
randomly picked up, his position is compared to all positions of neurons on the ring. The nearest 
neuron to the customer is then selected and moved towards him. The neighbors of the selected 
neuron move also towards the customer with a decreasing intensity controlled by the lateral 
function Kohonen (1982). An extensive analysis of this algorithm could be found in the works 
published by Fort (1988),  Angeniol et al. (1988) and Smith  (1999). 
 
3   SOM for the VRP with Backhauls 
 
The classical SOM approach consists of a neural network with a defined architecture that is 
interacting with its environment to represent it according to the following principle: 
Two neighboring inputs should be represented by two neighboring neurons. The neighborhood 
relationship between inputs is defined according to the Euclidean distance in this paper. The 
concept of neighboring neurons refers to neighborhood in the map formed by the neurons. This 
relationship is defined according to connectivity. 
From a routing perspective, it is clear that two neighboring customers should be assigned close 
positions in the routing schedule in order to minimize the total distance traveled by the vehicle.  
In this section, we will explain how to extend the SOM to VRPB. This extension is based on 
the design of a new architecture in which the TSP ring is replaced by a certain number of rings. 
Each ring represents a vehicle. For more details refer to [1,2]. In order to represent the concept 
of linehaul customers and backhaul customers, each ring will consist of two parts. The first 
part is a sequence of neurons that will interact exclusively with linehaul customers. They are 
called linehaul neurons. The second part of the ring consists of backhaul neurons, which means 
that these neurons will interact exclusively with backhaul customers. Experiments show that 
this architecture lacks flexibility preventing the network from evolving adequately. Therefore, 
the concept of ring has been replaced by the concept of chain. There will be two types of 
chains. Linehaul chains are formed of linehaul neurons and backhaul chains formed of 
backhaul neurons. The linehaul customers will interact exclusively with the linehaul chains, 
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the backhaul customers will interact exclusively with the backhaul chains. It is clear that those 
chains will not form tours. Therefore a procedure has to be implemented in order to respect the 
following requirements: 
 

• Rings should be formed to represent the sequence according to which the customers are 
visited 

• Each ring must be formed of a linehaul sequence followed by a backhaul sequence. The 
linehaul sequence represents the schedule of visiting the linehaul customers served by 
the corresponding vehicle and the backhaul sequence represents the schedule of 
visiting the backhaul customers served by the same vehicle. 

• Each ring must pass by the depot. 
 
Accordingly, the procedure consists of connecting the chain such that the requirements are 
respected. Consequently, four types of interactions are introduced to generate a feasible VRPB 
tour. Let us introduce the following notations: 
 
L  = 1 3 12 1i i ii {l = (x , x , x ), for i = ,.., N } be the set of 1N  Linehaul customers where ( 1ix  , 2ix ) are 

the coordinates of the Linehaul customer il  and 3ix  its weight. 
}1 2321 ,..,N), for j=, y, y=(y{ bB jjjj = be the set of 2N backhaul customers where ( 1 2j jy , y ) are 

the coordinates of the backhaul customer jb  and 3 jy  its weight.   
), y (xD dd=  be the coordinates of the depot. 

},N, , for k { vV vk …== 1  be the set of vehicles where vN is the number of vehicles 
Q is the vehicle capacity. Q is fixed because we have a homogenous fleet. 
Wm: is the current amount of goods delivered to Linehaul customers by the vehicle vm ,  

where m=1,...,Nv  
Gn: is the current amount of goods picked up at backhaul customers by the vehicle vn,      

where n=1,…,Nv 
Nk = {Nkl, Nkb} is the set of customers served by vehicle vk, where Nkl is the set of linehaul   
customers and Nkb is the set of backhaul customers, where k =1,...,Nv 
 

,1 2{ =( ) for j = 1,...,  }m m m
m mj j jC L X X N= be the set of Nm connected neurons forming the Linehaul 

chain of neurons., where 1, ..., ym N=  and 1 2( , )m m
j jX X  are the coordinates in the 

Euclidean space of the neuron Lj
m. 

~

1 2{ ( , ),  1,..., }nn n n
n j j jC B Y Y for j N= = =  the set of Nn connected neurons forming the Backhaul chain 

of neurons., where 1, ..., yn N=  and 1 2( , )n n
j jY Y  are the coordinates in the Euclidean space 

of the neuron Bj
n. 

 
(i) Interaction between the chains Cm and the Linehaul customers in L.  

In this interaction, the Linehaul customers in L will be presented to the chains Cm one by one 
in a random order. In order to choose the chain that will interact with the presented customer, 
we have to consider two factors: 1) The distance of the nearest neuron from each chain to the 
customer 2) The current weight of each chain. Each time a customer is assigned to a certain 
chain its current weight wm will be increased by the corresponding weight. The winning chain 
will be selected randomly according to a probability distribution taking into consideration 
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these two factors. Once a chain is selected, the position of its neurons will be adjusted 
according to the adaptation rule.  

(ii) Interaction between the chains Cn and the backhaul customers in B.  
In this interaction the backhaul customers in B will interact with Cn in a similar way to the 
interaction of type (i) and use to same adaptation rule. 

(iii) Interaction between the chains Cm  and Cn. 
Using the previous types of interactions, the chains will evolve independently. Nothing is 
forcing them to be connected in order to form a feasible route. For this reason, an 
interaction between the two chains Cm  and Cn, is introduced. We assume that each chain 
has a head and a tail. The tail and the head are represented by the last and the first neurons 
respectively. After presenting all backhaul and Linehaul customers, the chain Cm  will 
interact with the chain Cn having the nearest neuron tail to the Cm  neuron head. The 
objective of this interaction is to make the tail of the linehaul chain and the head of the 
corresponding backhaul chain converge. This convergence will allow the formation of a 
single ring representing a tour visiting the Linehaul and backhaul customers consecutively. 
The first neuron of the backhaul chain is assigned as the winner neuron in this interaction. 
This means that the algorithm at this level is not anymore a competitive algorithm but a 
supervised one in the sense that the last neuron of the linehaul chain has to be attracted by 
the first neuron of the backhaul chain. After this assignment, the adaptation rule has to be 
applied on the neurons of Cn .We apply the same procedure to the backahul chain, by 
presenting the first neuron of Cn to the first chain, assigning the last neuron of Cm  as the 
winner neuron and updating the positions of the neurons of Cm  according to the same 
adaptation rule.  

(iv) Interaction between the two types of chains and the depot. 
This type of interaction is similar to the last one, where the depot is presented to the linehaul 
chains. The first neuron of each Cm is assigned to the depot and considered as the winner 
neuron. Once this neuron is assigned, we update this neuron and its neighboring neurons 
according to the usual adaptation rule. The same procedure is applied to the last neuron of each 
chain Cn. The position of the neuron in the chains will give the position of the customers in the 
route.  
 
3 The CP-SOM Algorithm 
 
In this section the CP-SOM algorithm for VRPB is sketched in pseudo-code. Let us introduce 
the following additional notations: 
dL:  is the lateral distance. 
δ, β: parameters to control the probability function 
ή,α : parameters to control adaptation rule 
t : iteration number 
 
Step 1:   Initialization  
 
Step 2:  Select a city randomly  
 
Step 3:  Select a Winner neuron 

If  (C belongs to L ) Then  
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I. Selection of the nearest neuron for each Cm , *
mL  

Let *
mL be the winning neuron belonging to Cm, i.e. *

mL = * *
1 2( , )m mX X     

 Such that 
* 2 * 2 2 2

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )c m c m c i c iX X X X X X X X− + − ≤ − + −  

   ∀  i = 1,…,N1 
   ∀  m = 1,…,Nv. 

 d (C , *
mL ) is the Euclidean distance between C and *

mL  
II. Select the assigned chain according to the probability: 

* 2
3

* 2
3

d (C , ) exp( )exp( ) 1
( ) ( )

( , )
d (C , ) exp( )exp( ) 1

( ) ( )

m m k

m
m m k

L m w x
t t

P C C
L m w x

t t
m

δ β

δ β

− − + +
+

=
− − + +

+∑  

    ∀  m = 1,…,Nv. 
 

 Assume Cs to be the assigned chain  
kss x w w 3+=  

Add C to Nsl 
III. Update the coordinates of each neuron in set  Cs for example the x-

coordinate is updated by the following rule: 

 
s
jX1  (t+1) = 

s
jX 1  (t) + ή (t) × Γ(C, *

sL ) × ( Cx1  – s
jX 1  (t)),     

  ∀ Nj ,...,1= s.                        
 where 

       
2 *

*
2

( , )1( , ) e x p
2 ( )2

s
L j s

s

d L L
C L

tσ
⎛ ⎞−

Γ = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

If  (C belongs to B) Then  

I. Selection of the nearest neuron for each Cn , 
*
nB  

 Let B*n be the winning neuron belonging to Cn , i.e. *
nB  = * *

1 2( , )n nY Y  
 such that  
 

* 2 * 2 2 2
1 1 2 2 1 1 2 2( ) ( ) ( ) ( )c m c m c i c iY Y Y Y Y Y Y Y− + − ≤ − + −    

    ∀  i = 1,…,N2 
    ∀  n = 1,…,Nv. 
 

II. Select the assigned chain according to the probability: 
* 2

3

*
3

d (C , ) exp( )~ exp( ) 1
( ) ( )

( , ) 2d (C , ) exp( )exp( ) 1
( ) ( )

s n i

s n i

B m g y
t t

P C C n
B m g y

t t
n

δ β

δ β

− − + +
+

=
− − + +

+∑
 

    ∀  n = 1,…,Nv. 
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Assume 
~

sC  to be the assigned chain  
g  = g +  ys s 3k  
Add C to Nsb 
 

III. Update the coordinates of each neuron in set 
~

sC  for example the x-
coordinate is updated by the following rule: 

 s
jY1  (t+1) = s

jY1  (t) + ή (t) × Γ (C, *
sB ) × ( CY1 – s

jY1  (t)),      

 ∀ Nj ,...,1= s.                        
  where 

 
2 *

*
2

( , )1( , ) exp
2 ( )2
L j

s
s

s

d B B
C B

tσ
⎛ ⎞−

Γ = ⎜ ⎟
⎝ ⎠

 

 
Step 4. Extremities interactions: Apply the different types of Interactions 
 
Step 5.   End-Iteration Test: 

If Not {all customers are selected at the current iteration} Then go to Step 2.  
 

Step 6.   Stopping Criterion:        
If {all customers are within 10-4of their nearest neurons in the Euclidean space}  

Then Stop 
 
4. Computational Experience 
 

Our computational experience is designed to analyze the performance of the CP-SOM 
in terms of solution quality and computational requirements. The computational results are 
reported using a set of 33 instances, which were proposed in Toth & Vigo [8]. These instances 
are generated from the 11 classical instances of the VRP literature. The VRPB instances range 
in sizes between 21 and 100 customers. For each VRP problem instance, three VRPB instances 

are generated with ratios N
B=ρ

 -the number of backhaul customers over the total number of 
backhaul and linehaul customers- ranging from 50, 66 and 80%.  These instances were also 
used to report the experimental experience of many researchers, Toth and Vigo [9] and Wassan 
and Osman [6]. 
The parameters are chosen experimentally and are slowly decreased at each iteration by 1%. 
The Algorithm is robust in terms of parameters.  
The proposed algorithms for the VRPB are coded in C and run on a PC Intel Pentium MMX 
233 MHz.  The quality of an algorithm is measured by the relative percentage deviation (RPD) 
of the solution value from its optimal solution, or best-known value published in the literature 
and by the average of RPDs over all instances (ARPD).  
Three SOM variants, CP-SOM, CP-SOM1 and CP-SOM2, were implemented for the VRPB. 
The main difference between them is based on the way the local 2-opt optimization is 
embedded, while keeping invariant other parameters. The CP_SOM algorithm is the basic 
algorithm using SOM principles. In C_SOM1 a 2-opt procedure is used to improve the CP-
SOM generated solution, whereasCP-SOM2 calls periodically the 2-opt procedure every 50 
iterations within the CP-SOM implementation rather than only at the end as in CP-SOM1. The 
results comparing the performance of the 3 variants are given in table 1. We can observe that 
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the post-optimization has improved the results by 5% percent for large instances and around 
2% for instances of 50 points. For small instances CP-SOM is still getting the best known 
results. This means, that the performance of the neural approach is good in the allocation stage 
but can be improved at the scheduling stage by a local search procedure.  CPU time for post-
optimization is between 2 and 3% above the CP-SOM CPU time. This confirms that the neural 
network provides the solution while the improvements are due to the local search. Comparing 
the CPU time with other techniques such as the reactive tabu search [6] is not easy because of 
the use of different machines and programming languages. However, using some reasonnable 
approximation, it can be seen that the CP-SOM algorithms require more CPU time than 
other algorithms when the vehicle capacity is tight and when the number of linehaul and 
backhaul customers are not balanced. This can be seen especially for the instances 
corresponding to 100 customers. However, on average CP-SOM consumes 20% CPU time 
less than the reactive tabu search method for a performance that is 1.66% better. 
 
5 Conclusion  
 
The SOM heuristic variants CP-SOM1 and CP-SOM2 are designed and implemented for 
the VRPB. Their comparisons with the best existing heuristics show that they are 
competitive with respect to solution quality, but they require more computational effort, 
similar to other neural networks in the literature. In particular, CP-SOM1 heuristic is the 
best performing algorithms for small-sized instances up to 32 customers. Therefore, it must 
be recommended for such instances. For the medium to large instances, the performance of 
CP-SOM1 was enhanced by embedding a periodic-improvement strategy within its 
implementation leading to CP-SOM2. In general, our SOM based neural approach is by far 
more powerful, flexible and simple to implement than the Hopfield-Tank neural network 
method. 
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Table 1. Comparing the performance of the 3 SOM variants with the best known results 

 
 CP-SOM1 

  N 21 22 29 32 50 75 100 

50  0 0 0 0 4.6 2.68 3.8 

66 RPD 0 0 0 0 6 3.23 3.05 

80  0 0 0 0 4.7 3.05 3.7 

 CPU 30 31.33 52 53 83 317.25 3060.83 

  CP-SOM2 

50  0 0 0 0 0 0.79 3.23 

66 RPD 0 0 0 0 2.84 1.23 3.88 

80  0 0 0 0 1.22 2.35 3.65 

 CPU 32.67 34.67 53.67 54 86 331 3715.17 

  CP-SOM 

50  0 0 0 1.2 4.9 2.9 3.93 

66 RPD 0 0 0 1.7 6.3 3.41 3.96 

80  0 0 0 1.76 4.94 3.18 4.13 

 CPU 29 31.2 49.7 51.4 79 309.6 2952.9 

 
 

 
 
 
 
 


