
COMPETITIVE PROBABILISTIC SELF-ORGANIZING MAPS FOR
ROUTING PROBLEMS

Hassan Ghaziri

AUB, OSB
Beirut, Lebanon

ghaziri@aub.edu.lb

Abstract – In this paper, we have applied the concepts of the self-organizing map (SOM)
algorithm, to a routing problem called the vehicle routing problem with backhauls (VRPB).
Usually SOM is based on a single map to represent data. The main contribution of this paper is to
introduce a new architecture formed of multiple competing maps and to design the corresponding
learning algorithm such that the Kohonen maps can be applied to a family of routing problems.
Those problems are known to be NP-Hard problems. We have applied these concepts to the vehicle
routing problem (VRP) and to a variant of this problem called the VRP with Backhaul in which
customers are of two sorts : linehaul and backhaul customers. In designing the routes for the
various vehicles, linehaul customers should be visited first and then the backhaul customers. We
benchmarked the performance of our approach with the most powerful meta-heuristics and
obtained excellent results.

Key words – Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem,

1 Introduction

The VRPB problem we are considering in this paper consists of designing delivery routes to
serve two types of customers; linehaul and backahul customers
The following information is given:
• The Customers. The position of the customers is provided through their coordinates in the

Euclidean space. Along with their position, the weight or quantity of goods, of each
customer and its type are also provided. There are two types, the backhaul and linehaul
customers. A certain quantity of goods is delivered from the depot to the linehaul
customers and a certain quantity of goods must be picked up from each backhaul customer
and brought to the depot.

• The Vehicles. A fleet of homogeneous vehicles is given. It means that the number of
vehicles is known and the capacity of all vehicles is the same. Each vehicle can not ship a
quantity of goods that exceeds its capacity.

• The Depot. The location of the depot is known and its coordinates in the Euclidean space
are given.

Each vehicle starts its route from the depot visits the linehaul customers assigned to it for
delivery and then collects the corresponding goods from each backhaul customer and bring
them back to the depot.

WSOM 2005, Paris

2 SOM for Routing Problems: a Brief Review

Artificial Neural networks were used to solve routing problems, namely the Traveling Salesman
Problem (TSP). Hopfield (1995) network was among the first used to tackle this problem. In spite
of its novelty, this approach was not practical and not competitive with exact methods and meta-
heuristics. The applications were restricted to small sized problems not exceeding 20 to 50 cities.
The architecture that is usually used for routing problems and that was introduced by Fort (1988) is
the ring architecture. It consists of a set of neurons placed on a deformable ring. The concept of
tour is embedded in the ring architecture, since the location of a neuron on the ring can be
identified with the position in the visit as shown in the figure 2. This is the most important
advantage of this approach. The ring can be considered as a route for an ideal problem. The
interaction of the network with its environment, here the customers and the adaptation of its
neurons will force iteratively the ring to represent the real tour that will visit sequentially the
customers.
From a practical point of view, the SOFM algorithm starts by specifying the architecture of the
network, which consists of a one ring upon which the artificial neurons are spatially distributed.
The ring is embedded in the Euclidian space. Each neuron is identified by its position in the
Euclidian space and its position on the ring. The Euclidian distance will be used to compare the
positions of neurons with the positions of cities. The lateral distance will be used to define the
distance on the ring between two neurons. The lateral distance between any two neurons is defined
to be the smallest number of neurons separating them plus one. In the first step, a customer is
randomly picked up, his position is compared to all positions of neurons on the ring. The nearest
neuron to the customer is then selected and moved towards him. The neighbors of the selected
neuron move also towards the customer with a decreasing intensity controlled by the lateral
function Kohonen (1982). An extensive analysis of this algorithm could be found in the works
published by Fort (1988), Angeniol et al. (1988) and Smith (1999).

3 SOM for the VRP with Backhauls

The classical SOM approach consists of a neural network with a defined architecture that is
interacting with its environment to represent it according to the following principle:
Two neighboring inputs should be represented by two neighboring neurons. The neighborhood
relationship between inputs is defined according to the Euclidean distance in this paper. The
concept of neighboring neurons refers to neighborhood in the map formed by the neurons. This
relationship is defined according to connectivity.
From a routing perspective, it is clear that two neighboring customers should be assigned close
positions in the routing schedule in order to minimize the total distance traveled by the vehicle.
In this section, we will explain how to extend the SOM to VRPB. This extension is based on
the design of a new architecture in which the TSP ring is replaced by a certain number of rings.
Each ring represents a vehicle. For more details refer to [1,2]. In order to represent the concept
of linehaul customers and backhaul customers, each ring will consist of two parts. The first
part is a sequence of neurons that will interact exclusively with linehaul customers. They are
called linehaul neurons. The second part of the ring consists of backhaul neurons, which means
that these neurons will interact exclusively with backhaul customers. Experiments show that
this architecture lacks flexibility preventing the network from evolving adequately. Therefore,
the concept of ring has been replaced by the concept of chain. There will be two types of
chains. Linehaul chains are formed of linehaul neurons and backhaul chains formed of
backhaul neurons. The linehaul customers will interact exclusively with the linehaul chains,

Competitive Probabilistic Self-Organizing Maps for Routing Problems

the backhaul customers will interact exclusively with the backhaul chains. It is clear that those
chains will not form tours. Therefore a procedure has to be implemented in order to respect the
following requirements:

• Rings should be formed to represent the sequence according to which the customers are
visited

• Each ring must be formed of a linehaul sequence followed by a backhaul sequence. The
linehaul sequence represents the schedule of visiting the linehaul customers served by
the corresponding vehicle and the backhaul sequence represents the schedule of
visiting the backhaul customers served by the same vehicle.

• Each ring must pass by the depot.

Accordingly, the procedure consists of connecting the chain such that the requirements are
respected. Consequently, four types of interactions are introduced to generate a feasible VRPB
tour. Let us introduce the following notations:

L = 1 3 12 1i i ii {l = (x , x , x), for i = ,.., N } be the set of 1N Linehaul customers where (1ix , 2ix) are

the coordinates of the Linehaul customer il and 3ix its weight.
}1 2321 ,..,N), for j=, y, y=(y{ bB jjjj = be the set of 2N backhaul customers where (1 2j jy , y) are

the coordinates of the backhaul customer jb and 3 jy its weight.
), y (xD dd= be the coordinates of the depot.

},N, , for k { vV vk …== 1 be the set of vehicles where vN is the number of vehicles
Q is the vehicle capacity. Q is fixed because we have a homogenous fleet.
Wm: is the current amount of goods delivered to Linehaul customers by the vehicle vm ,

where m=1,...,Nv
Gn: is the current amount of goods picked up at backhaul customers by the vehicle vn,

where n=1,…,Nv
Nk = {Nkl, Nkb} is the set of customers served by vehicle vk, where Nkl is the set of linehaul
customers and Nkb is the set of backhaul customers, where k =1,...,Nv

,1 2{ =() for j = 1,..., }m m m
m mj j jC L X X N= be the set of Nm connected neurons forming the Linehaul

chain of neurons., where 1, ..., ym N= and 1 2(,)m m
j jX X are the coordinates in the

Euclidean space of the neuron Lj
m.

~

1 2{ (,), 1,..., }nn n n
n j j jC B Y Y for j N= = = the set of Nn connected neurons forming the Backhaul chain

of neurons., where 1, ..., yn N= and 1 2(,)n n
j jY Y are the coordinates in the Euclidean space

of the neuron Bj
n.

(i) Interaction between the chains Cm and the Linehaul customers in L.

In this interaction, the Linehaul customers in L will be presented to the chains Cm one by one
in a random order. In order to choose the chain that will interact with the presented customer,
we have to consider two factors: 1) The distance of the nearest neuron from each chain to the
customer 2) The current weight of each chain. Each time a customer is assigned to a certain
chain its current weight wm will be increased by the corresponding weight. The winning chain
will be selected randomly according to a probability distribution taking into consideration

WSOM 2005, Paris

these two factors. Once a chain is selected, the position of its neurons will be adjusted
according to the adaptation rule.

(ii) Interaction between the chains Cn and the backhaul customers in B.
In this interaction the backhaul customers in B will interact with Cn in a similar way to the
interaction of type (i) and use to same adaptation rule.

(iii) Interaction between the chains Cm and Cn.
Using the previous types of interactions, the chains will evolve independently. Nothing is
forcing them to be connected in order to form a feasible route. For this reason, an
interaction between the two chains Cm and Cn, is introduced. We assume that each chain
has a head and a tail. The tail and the head are represented by the last and the first neurons
respectively. After presenting all backhaul and Linehaul customers, the chain Cm will
interact with the chain Cn having the nearest neuron tail to the Cm neuron head. The
objective of this interaction is to make the tail of the linehaul chain and the head of the
corresponding backhaul chain converge. This convergence will allow the formation of a
single ring representing a tour visiting the Linehaul and backhaul customers consecutively.
The first neuron of the backhaul chain is assigned as the winner neuron in this interaction.
This means that the algorithm at this level is not anymore a competitive algorithm but a
supervised one in the sense that the last neuron of the linehaul chain has to be attracted by
the first neuron of the backhaul chain. After this assignment, the adaptation rule has to be
applied on the neurons of Cn .We apply the same procedure to the backahul chain, by
presenting the first neuron of Cn to the first chain, assigning the last neuron of Cm as the
winner neuron and updating the positions of the neurons of Cm according to the same
adaptation rule.

(iv) Interaction between the two types of chains and the depot.
This type of interaction is similar to the last one, where the depot is presented to the linehaul
chains. The first neuron of each Cm is assigned to the depot and considered as the winner
neuron. Once this neuron is assigned, we update this neuron and its neighboring neurons
according to the usual adaptation rule. The same procedure is applied to the last neuron of each
chain Cn. The position of the neuron in the chains will give the position of the customers in the
route.

3 The CP-SOM Algorithm

In this section the CP-SOM algorithm for VRPB is sketched in pseudo-code. Let us introduce
the following additional notations:
dL: is the lateral distance.
δ, β: parameters to control the probability function
ή,α : parameters to control adaptation rule
t : iteration number

Step 1: Initialization

Step 2: Select a city randomly

Step 3: Select a Winner neuron

If (C belongs to L) Then

Competitive Probabilistic Self-Organizing Maps for Routing Problems

I. Selection of the nearest neuron for each Cm , *
mL

Let *
mL be the winning neuron belonging to Cm, i.e. *

mL = * *
1 2(,)m mX X

 Such that
* 2 * 2 2 2

1 1 2 2 1 1 2 2() () () ()c m c m c i c iX X X X X X X X− + − ≤ − + −

 ∀ i = 1,…,N1
 ∀ m = 1,…,Nv.

 d (C , *
mL) is the Euclidean distance between C and *

mL
II. Select the assigned chain according to the probability:

* 2
3

* 2
3

d (C ,) exp()exp() 1
() ()

(,)
d (C ,) exp()exp() 1

() ()

m m k

m
m m k

L m w x
t t

P C C
L m w x

t t
m

δ β

δ β

− − + +
+

=
− − + +

+∑

 ∀ m = 1,…,Nv.

 Assume Cs to be the assigned chain
kss x w w 3+=

Add C to Nsl
III. Update the coordinates of each neuron in set Cs for example the x-

coordinate is updated by the following rule:

s
jX1 (t+1) =

s
jX 1 (t) + ή (t) × Γ(C, *

sL) × (Cx1 – s
jX 1 (t)),

 ∀ Nj ,...,1= s.
 where

2 *

*
2

(,)1(,) e x p
2 ()2

s
L j s

s

d L L
C L

tσ
⎛ ⎞−

Γ = ⎜ ⎟⎜ ⎟
⎝ ⎠

If (C belongs to B) Then

I. Selection of the nearest neuron for each Cn ,
*
nB

 Let B*n be the winning neuron belonging to Cn , i.e. *
nB = * *

1 2(,)n nY Y
 such that

* 2 * 2 2 2
1 1 2 2 1 1 2 2() () () ()c m c m c i c iY Y Y Y Y Y Y Y− + − ≤ − + −

 ∀ i = 1,…,N2
 ∀ n = 1,…,Nv.

II. Select the assigned chain according to the probability:
* 2

3

*
3

d (C ,) exp()~ exp() 1
() ()

(,) 2d (C ,) exp()exp() 1
() ()

s n i

s n i

B m g y
t t

P C C n
B m g y

t t
n

δ β

δ β

− − + +
+

=
− − + +

+∑

 ∀ n = 1,…,Nv.

WSOM 2005, Paris

Assume
~

sC to be the assigned chain
g = g + ys s 3k
Add C to Nsb

III. Update the coordinates of each neuron in set
~

sC for example the x-
coordinate is updated by the following rule:

 s
jY1 (t+1) = s

jY1 (t) + ή (t) × Γ (C, *
sB) × (CY1 – s

jY1 (t)),

 ∀ Nj ,...,1= s.
 where

2 *

*
2

(,)1(,) exp
2 ()2
L j

s
s

s

d B B
C B

tσ
⎛ ⎞−

Γ = ⎜ ⎟
⎝ ⎠

Step 4. Extremities interactions: Apply the different types of Interactions

Step 5. End-Iteration Test:

If Not {all customers are selected at the current iteration} Then go to Step 2.

Step 6. Stopping Criterion:
If {all customers are within 10-4of their nearest neurons in the Euclidean space}

Then Stop

4. Computational Experience

Our computational experience is designed to analyze the performance of the CP-SOM
in terms of solution quality and computational requirements. The computational results are
reported using a set of 33 instances, which were proposed in Toth & Vigo [8]. These instances
are generated from the 11 classical instances of the VRP literature. The VRPB instances range
in sizes between 21 and 100 customers. For each VRP problem instance, three VRPB instances

are generated with ratios N
B=ρ

 -the number of backhaul customers over the total number of
backhaul and linehaul customers- ranging from 50, 66 and 80%. These instances were also
used to report the experimental experience of many researchers, Toth and Vigo [9] and Wassan
and Osman [6].
The parameters are chosen experimentally and are slowly decreased at each iteration by 1%.
The Algorithm is robust in terms of parameters.
The proposed algorithms for the VRPB are coded in C and run on a PC Intel Pentium MMX
233 MHz. The quality of an algorithm is measured by the relative percentage deviation (RPD)
of the solution value from its optimal solution, or best-known value published in the literature
and by the average of RPDs over all instances (ARPD).
Three SOM variants, CP-SOM, CP-SOM1 and CP-SOM2, were implemented for the VRPB.
The main difference between them is based on the way the local 2-opt optimization is
embedded, while keeping invariant other parameters. The CP_SOM algorithm is the basic
algorithm using SOM principles. In C_SOM1 a 2-opt procedure is used to improve the CP-
SOM generated solution, whereasCP-SOM2 calls periodically the 2-opt procedure every 50
iterations within the CP-SOM implementation rather than only at the end as in CP-SOM1. The
results comparing the performance of the 3 variants are given in table 1. We can observe that

Competitive Probabilistic Self-Organizing Maps for Routing Problems

the post-optimization has improved the results by 5% percent for large instances and around
2% for instances of 50 points. For small instances CP-SOM is still getting the best known
results. This means, that the performance of the neural approach is good in the allocation stage
but can be improved at the scheduling stage by a local search procedure. CPU time for post-
optimization is between 2 and 3% above the CP-SOM CPU time. This confirms that the neural
network provides the solution while the improvements are due to the local search. Comparing
the CPU time with other techniques such as the reactive tabu search [6] is not easy because of
the use of different machines and programming languages. However, using some reasonnable
approximation, it can be seen that the CP-SOM algorithms require more CPU time than
other algorithms when the vehicle capacity is tight and when the number of linehaul and
backhaul customers are not balanced. This can be seen especially for the instances
corresponding to 100 customers. However, on average CP-SOM consumes 20% CPU time
less than the reactive tabu search method for a performance that is 1.66% better.

5 Conclusion

The SOM heuristic variants CP-SOM1 and CP-SOM2 are designed and implemented for
the VRPB. Their comparisons with the best existing heuristics show that they are
competitive with respect to solution quality, but they require more computational effort,
similar to other neural networks in the literature. In particular, CP-SOM1 heuristic is the
best performing algorithms for small-sized instances up to 32 customers. Therefore, it must
be recommended for such instances. For the medium to large instances, the performance of
CP-SOM1 was enhanced by embedding a periodic-improvement strategy within its
implementation leading to CP-SOM2. In general, our SOM based neural approach is by far
more powerful, flexible and simple to implement than the Hopfield-Tank neural network
method.

References
[1] J.J. Hopfield, & D.W. Tank, Neural computation of decisions in optimization problem.
Biological Cybernetics, Vol. 52, pp. 141-152, 1985.
[2] J.C. Fort, Solving a combinatorial problem via self-organizing process: An application
to the traveling salesman problem. Biological Cybernetics, Vol. 59, pp. 33-40, 1988.
[3] H. Ghaziri, Supervision in the self-organizing feature map: application to the vehicle routing
problem. In: I.H. Osman and J.P. Kelly, Meta-Heuristics: Theory and Applications, (pp. 651-
660). Kluwer Academic publishers, Boston, 1996.
[4] H. Ghaziri, & I. Osman, A neural network algorithm for traveling sales man problem With
backhauls. Computers & Industrial Engineering. Vol. 44, pp. 267-281, 2003.
[5]T. Kohonen, Self-Organizing Maps. Springer-Verlag: Berlin, 1995.
[6] I.H. Osman, & N.A. Wassan, A reactive tabu search for the vehicle routing problem with
Backhauls. Journal of Scheduling, Vol 5, pp 263-285, 2002.
[7] K.A. Smith, Neural network for combinatorial optimization: A review of more than a
decade of research. INFORMS Journal on Computing, Vol. 11, pp. 15-34., 1999.
[8] P. Toth, & D. Vigo, A heuristic algorithm for the vehicle routing problem with backhauls. In
Advanced Methods in Transportation Analysis, Bianco L, pp.585-608, 1996.
[9] P. Toth, & D. Vigo, A heuristic algorithm for the symmetric and asymmetric vehicle routing
problems with backhauls. European Journal of Operational Research, Vol. 113, pp. 528-543,
1999.

WSOM 2005, Paris

Table 1. Comparing the performance of the 3 SOM variants with the best known results

 CP-SOM1

 N 21 22 29 32 50 75 100

50 0 0 0 0 4.6 2.68 3.8

66 RPD 0 0 0 0 6 3.23 3.05

80 0 0 0 0 4.7 3.05 3.7

 CPU 30 31.33 52 53 83 317.25 3060.83

 CP-SOM2

50 0 0 0 0 0 0.79 3.23

66 RPD 0 0 0 0 2.84 1.23 3.88

80 0 0 0 0 1.22 2.35 3.65

 CPU 32.67 34.67 53.67 54 86 331 3715.17

 CP-SOM

50 0 0 0 1.2 4.9 2.9 3.93

66 RPD 0 0 0 1.7 6.3 3.41 3.96

80 0 0 0 1.76 4.94 3.18 4.13

 CPU 29 31.2 49.7 51.4 79 309.6 2952.9

