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Abstract - In order to remove the “border effect”, several spherical Self-Organizing Maps
(SOM) based on the geodesic dome have been proposed. However, existing neighborhood
searching methods on the geodesic dome are much more time-consuming than searching on
the normal rectangular/hexagonal grid. In this paper, we present detailed descriptions of the
algorithms used in training the Geodesic SOM (GeoSOM), which we previously proposed. Ex-
perimental results show that the GeoSOM runs almost at the same speed of the conventional
2D SOM and it also represents the data more accurately. In visualizing the GeoSOM, a 2D
data map can be created by projecting the spherical SOM onto 2D the plane. The user is able
to select any point of interest to be the center of the 2D map. No retraining is required when
changing the center point.
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1 Introduction

1.1 Border effect and the spherical SOM

In a conventional SOM, the neighborhood relationship is defined by a 2D rectangular or
hexagonal lattice. During the training phase, all neurons compete with each other for the
input signals; the winner and its neighbors update their connection weights. Ideally, at the
end of the training, all samples are equally represented by neurons, and the neighboring units
in the grid tend to model similar regions of the data space. However, the grid units at the
boundary of the SOM have fewer neighbors than the units inside the map, which often leads
to the notorious “border effect” — the weight vectors of these units “collapse to the center
of the input space”[11].

Several approaches have been suggested to eliminate the “border effect”, such as the heuristic
weighting rule method by Kohonen [7] and the local-linear smoothing by Wand and Jones
[12]. Besides the mathematical solutions, the problem can also be solved by removing the
edges from the SOM: implement the SOM on a torus [6, 14] or on a sphere. There are
several disadvantages with the torus-based SOM. First, when it is used for the purpose
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of visualization, it fails to provide an intuitively readable map. We are familiar with a
map generated from a sphere but not those based on the torus. Second, the surface areas
associated with each neuron varies significantly on a surface of the torus. The surface area
allocated to a neuron is much smaller near the inner circle and much larger around the
outer circle. For SOM, it’s desirable to have all neurons receive equal geometrical treatment.
Ritter [9] suggested the use of tessellated platonic polyhedra as the underlying lattices. He
also pointed out that the spherical SOM would be very suitable for data with underlying
directional structures. Since then, several spherical SOM based on the geodesic dome have
been implemented and applied to different types of data sets [3, 4, 10].

1.2 A brief discussion of the geodesic dome

The five platonic polyhedra (tetrahedron, octahedron, cube, dodecahedron and icosahedron)
are all regular tessellations of the sphere. Each of them has equal edge length and their
vertices have the same number of immediate neighbors. However, the geodesic domes created
by further tessellating the polyhedra will not have such regular characteristics. Figure 1
illustrate the tessellation process. Detailed descriptions of the tessellation process can be
found in [8]. Because the icosahedron is most similar to the sphere, so after tessellation, it
always has the smallest variances in edge length compared to the geodesic domes obtain from
other platonic polyhedra. This makes the icosahedron-based geodesic dome more suitable for
a spherical SOM [13].

Figure 1: Left to right: one-frequency, two frequency, three frequency and four frequency tessellation

1.3 Existing data structures for the geodesic dome

During the training of a SOM, a winning neuron and its neighbors, defined by a neighborhood
function, update their weight vectors for each input. This process will go for a number of
iterations in order for the SOM to converge. Neighbor neurons are located as a result of a
neighborhood search. Hence, it could be a very time-consuming process, especially when a
data set is large. A conventional SOM stores its neurons in a 2D rectangular or hexagonal
lattice, more specifically a 2D array data structure. This means that the neighbors of the
winning neuron can be located very fast by simple 2D array indexing. Storing a geodesic lat-
tice structure is usually much more complex. Hence, the data structure to store the geodesic
lattice should support fast vertex indexing in order to avoid considerable performance loss.

In Sangole’s spherical SOFM [10], the distance between two neurons on the geodesic dome
was defined to be the length of the shortest path connecting them. Every grid unit maintains
a list of its immediate neighbors. To find out all neighborhood units of the winning neuron,
the immediate neighbors are read from the winning neuron’s neighborhood list. It is followed
by the execution of the same procedure on the selected neighbor neurons until the target
level is reached. Farid’s SOM [4] used a similar scheme by treating the geodesic dome as a
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3D adjacency graph. The main problems of using this approach is that we need to carefully
maintain a large number of pointers, and the execution speed is much slower compared to
looking for neighbors in a 2D array. Furthermore, if we need to increase the number of units
in a SOM [1], all the immediate neighbor pointers need to be recursively updated. Nakatsuka
[3] calculates the distance between two neurons as the angle between their location vectors.
This method is also slow because every time a neighbor is updated, we need to perform extra
floating point calculations to obtain the distance.

2 Data structure for the icosahedron-based geodesic dome

2.1 The 2D data struture

The icosahedron-based geodesic dome can be opened up on a 2D plane. Figure 2(a) shows
a four frequency icosahedron after opening. The lines marked with the same color indicate
where the dome are split and they represent the same line on the dome. Vertices along these
lines need to be duplicated. Most of the boundary vertices would be duplicated only once,
such as point B and B′. However, the two poles A and C would be duplicated for four times.

V

U

(0,0)

A A'
B B'

A' ' A" "A' ' '

C 'C C ' ' C " ' C " "

(a)

(i+1,j+1)

(i+1,j)(i-1,j)

(i,j+1)

(i-1,j-1)

V

U

(i,j)

(i,j-1)
E

E '

O n e of th e v_ar r ays

Th e u _ar r ay

w

E
E '

(b)

Figure 2: (a) Unwrapped four frequency Icosahedron and (b) the corresponding data Structure

We defined two axes U and V on this lattice. Each vertex on the lattice can then be uniquely
denoted by the two-dimensional coordinate pair (u, v). By rotating all the vertices on the
lattice such that the two axes U , V are orthogonal to each other, we obtain a 2D matrix
to store all the vertices of the geodesic dome. In our program, vertices sharing the same
u coordinate are stored in a one-dimensional array, called a v array, in order of ascending
v coordinate. Every v array is contained within another one-dimensional array, called the
u array, in order of ascending u coordinate. It should be noted that only the vertices at
the boundary may be duplicated; therefore the number of duplicated vertices will be very
small compared to the total number of vertices. Using this data structure, only O(n) space
is needed to store the geodesic dome, where n is the number of vertices on the dome.
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2.2 Searching and updating the neighborhood

Similar to Sangole’s method [10], the neighbors of a vertex are grouped into levels. For the
point W in Figure 2(b), its first level neighbors are the vertices that connect to it by only
one edge on the geodesic dome. The second level neighbors are the vertices that connect to
W by two edges and so on. In order to find all neighbors within the specified update radius,
an iterative search process needs to occur starting at the first level neighbors until the target
level is reached.

Each point in the 2D geodesic dome lattice has six first level neighbors. For point W (i, j), the
first level neighbors can be indexed as easy as: (i, j +1), (i+1, j +1), (i+1, j), (i− 1, j− 1),
(i−1, j), (i, j−1). As mentioned before, there are duplicated points on the lattice’s boundaries
and they represent the same weight vector. For example, in Figure 2(b), point E and E′ are
the same point on the dome. Only one of them should be included as W ’s immediate neighbor
or the same weight vector will be updated twice. In our program, each vertex maintains a list
of its duplicated points. If one of them is already included, others are marked and wouldn’t
be included again. In the case when the winning neuron itself has duplicated points, such
as point A (in Figure 2(a)), all the neighbors of its duplicated points (from A′ to A′′′′) need
to be searched. Following is the pseudo code for searching and updating a winning neuron’s
neighborhood on the data structure.

Algorithm 1 Find and update neighbors within radius r of the winning neuron
1: Find the first level neighbors of the winning neuron
2: Insert the neighbors into list A
3: Initialize an empty list A1

4: for l = 2 to r do
5: for each neuron in A do
6: if visited then
7: Continue;
8: end if
9: Update the neuron’s weight vector according to l

10: Marked the neuron and its duplicated points as visited
11: Find the first level neighbors of the neuron
12: Insert the neighbors into list A1

13: end for
14: A ⇐ A1

15: A1 ⇐ ∅
16: end for

2.3 Increasing the number of neurons

The number of vertices of the icosahedron-based geodesic dome is given by: v = 10 ∗ f2 + 2,
where f is the frequency number [5]. In our data structure, every pair of adjacent vertices is
connected by one edge on the geodesic dome. Hence, increasing a geodesic dome’s frequency
involves inserting new vertices into every adjacent pair of vertices. In fact, it is quite straight-
forward to obtain an m ∗ n frequency geodesic dome from an m frequency dome. We only
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need to calculate and insert (n − 1) new vertices between the adjacent vertices pairs. Here
for simplicity, Figure 3 only illustrates how to tessellate the icosahedron into a two frequency
geodesic dome using our data structure. Some new duplicated points will be created along
the boundaries of the map. Therefore, after inserting the new vertices, we need to scan along
the map boundaries to find all the duplicated points. Algorithm 2 is the pseudo code for
increasing a geodesic dome’s frequency.

Figure 3: Increasing the frequency of the geodesic dome

Algorithm 2 Increase frequency of the geodesic dome by f

1: for every v array do
2: calculate the f − 1 new vertices between every two vertical adjacent vertices
3: end for
4: for every two adjacent v arrays do
5: calculate the f − 1 new vertices between every two horizontal adjacent vertices
6: calculate the f − 1 new vertices between every two diagonal adjacent vertices
7: end for
8: Scan the boundary of the new map to find the duplicated points

Note that in increasing the frequency, we only need to calculate the new vertices and insert
them into the right place of the data structure. No additional adjacency matrix or neighbor
pointers need to be updated.

3 Experimental Evaluation

In this section, we compare our GeoSOM with the conventional 2D SOM. The 2D SOM is
trained by SOM PAK [7]. Training times and quantization errors are measured. We also
implement a program to visualize the training results.

3.1 Experiment setup

We generate 3D synthetic data for this experiment. The data set contains seven clusters
and each cluster has 500 normally distributed data points. The standard deviation is 1
in each dimension. The means of the clusters are: (0, 0, 0), (10, 0, 0), (0, 10, 0), (0, 0, 10),
(−10, 0, 0), (0,−10, 0), (0, 0,−10). Figure 4 shows the how the clusters are located in 3D
space. The GeoSOM uses a 10 frequency geodesic dome as the lattice which contains 1002
neurons. The 2D SOM is trained on a 37×27 hexagonal grid (999 neurons). For both SOMs,
the initial learning rate is 0.8 and the initial update radius is 20, both of which linearly
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decrease according to the training time. A Gaussian neighborhood is used. The experiment
is conducted on a Pentium IV 3.0GHz workstation with 1 GB memory. The operating system
is Windows XP Professional Edition. Note that the GeoSOM was implemented in Java and
SOM PAK was written in C.
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Figure 4: The 3D synthetic data set

3.2 Results

For this relatively simple data set, both of the SOMs converge very fast: the GeoSOM begins
to converge after 10 epochs of training while the 2D SOM begins to converge after 15 epochs.
The GeoSOM always achieves a lower quantization error than the 2D SOM. For example,
when trained for 40 epochs, the error of the GeoSOM is 0.4996441 and the error of the 2D
SOM is 0.6632137, which means the GeoSOM reduces about 25% of the quantization error.
As to the training speed, the GeoSOM is a little slower than the 2D SOM due to more complex
neighborhood searching. However, considering the GeoSOM was implemented in Java, we
can conclude our proposed data structure indeed supports fast neighborhood searching on
the geodesic dome.
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Figure 5: The quantization error and training time

3.3 Visualize the experiment results

In our visualization program, the neurons are colored according to the average distances be-
tween each neuron and its direct neighbors. The colors are linearly changing from blue, cyan,
yellow to orange. Blue denotes the smallest variance between the weight vectors, and orange
the largest.
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Compared to a 2D data map, the spherical map is not convenient for the user to have a global
view of the entire data set. Hence, we implement an interface to project the GeoSOM on to
a 2D plane. Currently, the Wagner III pseudocylindrical projection is used. This projection
is neither equal-area or conformal. However, it has less extreme distortions and therefore can
give a more balanced representation of the sphere’s main features [2]. Using our program,
the user can choose any point on the sphere to be the center of the 2D map. He/she can also
choose the direction of the sphere’s central axis. Using the conventional 2D SOM, this can
only be done by fixing some data on the SOM during training. If the user wants to change the
point of interest, he/she needs to redo the training. Figure 6 shows the visualization results.
The white line on the GeoSOM shows where the sphere is split and the arrow indicates the
direction of the central axis.

(a) GeoSOM

(b) 2D SOM

Figure 6: Visualization of SOMs after trained for 100 epochs.

From the visualization of both SOMs, we can see that there are seven clusters in the data set
and adjacent clusters on the map are close to each other in the original data space. Compared
to the 2D SOM, the GeoSOM can give more information about how the data is related. For
example, cluster 5 is close to clusters 1, 3, 4, 6 and 7. However, on the 2D SOM, 5 is only
adjacent to 3 and 7 but far away from clusters 1, 4, 6. These relationships are shown more
clearly on the GeoSOM because the it has no boundaries. Of course, some information is lost
because of the dimension reduction: cluster 1 is closed to every other cluster in the original
data space; but on both of the SOMs, two of the clusters are not adjacent to cluster 1.

4 Conclusions

Several spherical SOMs using a geodesic dome as an underlying grid structure have been im-
plemented and applied to different data sets. However, existing neighborhood searching algo-
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rithms on the geodesic dome are inefficient, which makes the time-consuming training process
even longer. We proposed a 2D rectangular grid data structure to store the icosahedron-based
geodesic dome. This data structure supports efficient tessellation of icosahedron as well as
fast neighborhood searching. Experiment results show that our GeoSOM not only runs in
comparable speed with SOM PAK, but also cut down the quantization error by 25%. We
also developed an interface to project the spherical SOM on to a 2D plane. The user can
choose any point of interest to be the center of the 2D data map for close examination.
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