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Abstract - Some well known theoretical results concerning the universal approximation

property of MLP neural networks with one hidden layer have shown that for any function f

from [0, 1]n to <, only the output layer weights depend on f . We use this result to propose

a network architecture called the predictive Kohonen map allowing to design a new speech

features extractor. We give experimental results of this approach on a phonemes recognition

task.
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1 Introduction

Most of the speech recognition systems require in the very first stage to model the short-
term spectrum of the signal (typically windows from 10 to 20 ms). MFCC parameters (Mel
Frequency Cepstrum Coding) are for a long time used because of their robustness and of
the quality of their statistical distribution. Authors as Hermansky [3] however pointed out
the importance to revisit the feature extraction stage. He proposed to use the more recent
perceptual auditive models such as the PLP and RASTA-PLP [1],[2]. One also find parametric
approximation methods of the short-term spectrum. Instead of using directly the short-term
spectrum as for MFCC, one can approximate it by parametric approaches like it is done in
the well-known LPC (Linear Predictive Coding). Usually these approximations are based on
linear assumptions of the speech production model (i.e. vocal tract).

1.1 Non linear models

Gas and Zarader [7] proposed a new feature extraction method based on a neural network
approach (MLP) : The Neural Predictive Coding (NPC). This model is a non-linear extension
of the LPC. Consequently, the NPC parameters are the coefficients of the non-linear auto-
regressive model estimated by prediction error minimization [4]. They can be seen as a
nonlinear parametric modeling of the short-term spectrum. The main drawback of neural
networks approach is the feature vector dimension which can be very high [5]. Traditionaly
used approach consists in reducing the representation space by the means of a discriminant
analysis (LDA) [8], possibly nonlinear (NLDA) [6]. The NPC model aims to solve this problem
by using the output layer weights as a signal representation or features. The generated
acoustic vector thus sees its dimension depending only on the arbitrary number of hidden
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cells and not on the input size (i.e. prediction context). It is not necessary any more to
change the representation space.

1.2 Discriminative models

One drawback of the NPC parameters, inherited from LPC parameters, is their lack of
discrimination. In fact, they are more adapted to speech coding and synthesis applications
[11]. Juang and Katigiri [9] showed that a reinforcement of the discriminant property can be
obtained by adapting the features extraction to the classification task. For example, Biem
and Katagiri [10] proposed to estimate the optimal spectral width of the MFCC filters bank
during the classifier training stage. Similar ideas have been used to make improvements of the
NPC coder. Two new versions of the coder were thus proposed (DFE-NPC and LVQ-NPC),
[13]. They were tested on phonemes recognition [14] and speaker recognition [15].

1.3 Unsupervised models

Some applications (for example the segmentation of unknown speakers in radio broadcast
news) do not provide classes membership information (the speakers). An alternative consists
in using unsupervised algorithms. We propose in this article a new unsupervised version of
the coder called NPC-K (K for Kohonen) which could be also called SOM-NPC. The output
layer cells are organized according to a topological map called the topological predictive map.
We show by experiments that a specialization of the output layer weights is obtained by
self-organization, according to the membership class of the input signals.

2 NPC-K parameters

In 1957, Kolmogorov proved with its superposition theorem (13th Hilbert problem refutation)
that every continuous function f from En to < defined on the n-dimensional Euclidean unit
cube En and with range on the real line < can be represented as a sum of continuous functions:

f(x1, . . . , xn) =
2n+1
∑

q=1

φq(
n
∑

p=1

ψpq(xp)) (1)

Hecht-Nielsen [16] recognized that this specific format of Kolmogorov’s superpositions can be
interpreted as a feedforward neural network with a hidden layer that computes the variables

yq =
n
∑

p=1

ψpq(xp) (2)

This suggestion has been criticized by Poggio and Girosi [17] for several reasons, one being
that applying Kolmogorov’s theorem would require the learning of nonparametric activation
functions. However, other similar results have been obtained by the use of functional analysis
theorems [18]. What makes Hecht-Nielsen’s network particularly attractive for us is that the
hidden layers are fixed independently of any function f , so that in theory this part of the
neural network is trained once for n (It was demonstrated by Kurkova [19], Sprecher and
Katsuura [20] and others that there are universal hidden layers that are independant even
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of n). The NPC features extractor is builded from this principle : only the output layer
weights are the feature vector. The remaining problem is then to estimate the hidden layer
weights. Four estimation methods have been already proposed (NPC, NPC-2, DFE-NPC
and LVQ-NPC). The proposed one here has the advantage of being unsupervised and clearly
puts in obviousness the output weights specialization.

2.1 NPC-K coder definition

Following the Lapedes and Farber [4] model, one can see the NPC encoder as a layered neural
network trained to predict time series. For a given signal frame m generated by an unknown
non linear operator f , it is trained from examples of pairs of xk = [yk−1, yk−2, . . . , yk−λ]>

input vectors and yk output samples, while minimizing the mean square error:

Qm(Ω,a) =
1

2

K
∑

k

(yk − FΩ,a(xk))
2 (3)

where FΩ,a is the non linear function realized by the neural network with parameters noted
Ω (first layer weights) and a = [a1, . . . , aN ]> (hidden layer weights) including sigmoidal
node functions. More precisely, FΩ,a can be viewed as the composition of two functions GΩ

(corresponding to the network first layer) and Ha (corresponding to the network output layer)
such that:

FΩ,a(xk) =
∑

i

aiσ[
∑

j

ωijyk−j ] = GΩ ◦Ha(xk) (4)

The NPC coding needs two computing stages. 1) the parameters adjustment stage which
consists in the learning of the weights of the first layer Ω once a time; 2) the features extraction

stage which occurs at every signal frame coding: only the a weights are learned while the
hidden layer weights (issued from the first stage) remain fixed. The prediction error which
must be minimized over all the sample vectors xk of the frame m is then given by :

Qm(a) =
∑

k

(yk −Ha(zk))
2 with zk = GΩ(xk), (5)

using a standard multidimensional optimisation method, e.g. steepest descent (error back
propagation).

2.2 NPC distance

The first stage (first layer weights learning), which is unsupervised in our case, is done
by defining a set of predictive output cells organized on a 2 dimension map. Because the
comparison between patterns from the input signals space and vectors from the second layer
weights space is not immediate, we need to define a specific distance. The NPC distance [14]
between two signal frames l and m is defined as the Itakura’s distance measure was in the
framework of linear prediction techniques [22]:

dNPCΩ (l,m) = log
Qm(Ω,al)

Qm(Ω,am)
(6)

(6) gives the ratio of the frame m prediction error using the frame l NPC parameters al and
the same frame prediction error, but using the frame m NPC parameters am. When applying
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the m signal frame to the NPC (for a given Ω) with its adapted coding coefficients am, the
output residual error Qm(Ω,am) is minimal. On the other hand, when applying the same
signal to the NPC with the adapted coding coefficients al of the l signal frame, the residual
error Qm(Ω,al) is not minimal and one obtains Qm(Ω,al) ≥ Qm(Ω,am). For l = m, one
has dNPCΩ (l,m) = 0. Let us note that dNPCΩ (l,m) is a not a true distance since it is not
symetrical.

2.3 First layer weight and predictive map trainning

We define a network structure with L output cells on a 2D map (see fig. 1) with a local
neighborhood function V σ. In traditional Kohonen map, the algorithm is based on the
Euclidean distance in the input space. However in this new predictive map, we use, for
consistency, the previously defined NPC distance in the signal space. The obtained algorithm
is described as follows:
For all the training frames m :

1) finding the winner neuron l∗ of the map such that :

l∗ = arg min
l=1,...,L

dNPCΩ (l,m) = arg min
l=1,...,L

{log
Qm(al)

Qm(am)
} = arg min

l=1,...,L
{Qm(al)} (7)

2) updating the winner neuron and its neighbors weights such as to minimize the dNPC

distance (this is equivalent to minimize the square prediction error) :

Qm(a1,...,L) =
L
∑

l

∑

k(m)

(yk −GΩ ◦Hal(xk))
2V σ(l∗, l) (8)

were V σ(l, l∗) = e−
d(l,l
∗

)

2σ is the neighborhood function (a gaussian low in our case, d(l, l∗)
being the length of the shortest way between l and l∗ in the map and σ the standard
deviation). σ is a decreasing function of the learning time such that σ(q) = [

σf
σi

]
1

N σ(q−1)
where σi and σf are the initial and the final imposed values of the standard deviation
and N the learning iteration number.

3) updating the first layer weights by error backpropagation

The expressions that permit to adapt the vector weights are derived from the traditionnal
MLP backpropagation algorithm (gradient descent) as follows :

1) output layer weigths al :

ail(q) = ail(q − 1)−
∂Qm

∂ail
(9)

= ail(q − 1) + V σ(l∗, l)
∑

k(m)

(yk − φ(Vk))φ̇(Vk)φi(xk) (10)

φ being the sigmoid function, Vk the l map cell potential : Vk =
∑

j ajlφj(xk) and

φi(xk) the output of the ith first layer cell.
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2) first layer weigths ωji :

ωji(q) = ωji(q − 1)−
∂Qm

∂ωji
(11)

= ωji(q − 1) +
L
∑

l=1

ailV
σ(l∗, l)

∑

k(m)

(yk − φ
2
l (xk))φ̇

2
l (xk)φ̇

1
i (xk)yk−j (12)

where φ1
i (xk) is the activity of the ith first layer cell and φ2

l (xk) the activity of the l
output map cell. φ̇ denotes the derivative sigmoid function.

xk( )F a, lΩ

x k( )F a, l*Ω

λ

λ

λ
Ω al

a

First layer weights Output layer weights
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σ

y

y

y

y
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k−  +1
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Figure 1: NPC-K coder.

2.4 NPC-K feature vector computing

There are at least two ways of using the NPC-K predictive map. One can uses it as a
feature extractor or both as a feature extractor and a feature classifier. As forth-mentioned
in paragraph 2.1), the first way consists in estimating the a weight vector while presenting
the signal frames. The second way consists in using the predictive map by 1) labelling it in
an adequate manner and 2) choosing the map cell which minimize the NPC distance when
presenting a signal as input. This last way is of a greater interest for us : combining data
modelization and data classification is one of the research interests on which we are focused.
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vowels voiced plosives unvoiced plosives
frames 11701 883 3223
phones /aa/ /ae/ /ey/ /ow/ /b/ /d/ /g/ /p/ /t/ /k/
frames 2924 4600 2161 2016 258 312 313 623 1100 1510

% 24% 39% 18% 17% 29% 35% 35% 19% 34% 46%
cells (/64) 13 32 13 6 14 32 18 19 34 46

% 20.3% 50% 20.3% 9.3% 22% 50% 28% 15.6% 53.1% 31.2%

Table 1: Phoneme training bases

2.5 Experimental results

We built three phoneme bases extracted from the Darpa-TIMIT speech database. The first
base groups four classes of voiced phonemes (vowels) very commonly used: /aa/, /ae/, /ey/
and /ow/. the second and the third bases group two series of phonemes : /b/,/d/,/g/
(voiced plosives) and /p/,/t/,/k/ (unvoiced plosives). Those phonemes are frequently used
and simultaneously difficult to process. We used the two first Dialect Regions : DR1 (see
table 1) for the training set of both the NPC-K first layer estimation and both the MLP
classifier training. DR2 for the test set.

d d d d d g g g
d d d d d b g g
d d d d d b g g
d d d d g b g g
g d d d d d g g
d d d b d d g g
d b d b b b b b
d b b b g g g b

q q q q q q q t
q q q q q q p t
q q p t t t t t
q p p p t t t t
p q p p t t t t
p q t t t t t t
p q q t t t t t
t t t t t t t t

ow ow aa ae ae ae ae ey
ow aa aa aa ae ae ae ey
ow aa aa aa ae ae ey ey
ow ae aa aa ae ae ey ey
aa ae ae ae ae ae ae ey
aa aa ae ae ae ae ey ey
ow ae ae ae ae ae ey ey
aa ey ey ae ae ae ae ae

Table 2: Map cells labelling for the 3 phoneme bases

We trained three NPC-K coders of 16 inputs, 16 hidden cells, 8×8 = 64 predictive cells and σ
varying from 8 to 0.1. After 50 training epochs (for example each epoch means 11701 frames
presented to the network for the first vowels base) we then obtained the map cells labelling in
table 2. A map cell is labelled according to the most frequently winner class. The coder can
be then used as a phonemes classifier. The number of cells sharing the same label depends

features extractor classifier data set recognition rate
vowels voiced plosives unvoiced plosives

NPC-K NPC-K map training set 64% 66% 76%
NPC-K NPC-K map test set 59% 63% 69%
NPC-K MLP training set 64% 88% 86%
NPC-K MLP test set 56% 64% 77%

LPC MLP training set 75% 88% 87 %
LPC MLP test set 70% 63% 76 %

Table 3: Phonemes recognition rates obtained from 2 layers MLP and NPC-K classifiers
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on the signals class complexity but also on the ratio of the corresponding frames used for the
training (see the table 1). Once the first stage is finalized, we compute the NPC-K parameters
of the DR1 and DR2 speech frames. The DR1 features were used to train a two layers MLP
(16 × 10 × 3 cells, for the /p/, /t/, /k/ phonemes experiment for example) as a phoneme
classifier (60000 training iterations). We reported on table 3 the recognition rates obtained on
the three bases from both the coder and both the MLP classifier. For comparaison, we added
the scores obtained using the LPC features extractor (Linear Predictive Coding) on the same
data set. The visible organization of the output cells on the 2D map shows that the output
layer weights carry really important features related to the modelized short-term spectrum.
However comparaison with the LPC coding shows that vowels features are extracted better
with LPC than with NPC parameters. On the contrary, all of the plosives features are well
extracted with NPC as well as with LPC.

3 Conclusions

We have proposed a predictive self-organizing map architecture which ensure the unsuper-
vised training of a NPC coder under the assumption that only the second layer weights carry
the modelized signal features. Phoneme feature extraction experiments given in this article
have shown an interesting self-organizing process of the output cells which seems to confirm
the initial assumptions. Our current works are devoted to the study of an adaptative neigh-
borhood function. We are also focusing on a non deterministic reading of the predictive map
mainly because the higher levels of speech systems usually need class probability estimation.
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