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Abstract – We present controversial empirical results about the relative convergence of 
batch and online neural network vector quantization (VQ) learning algorithms. It is the 
commonplace belief that online algorithms have a very slow convergence, while batch 
versions are faster and give better results. However we propose an online realization of the 
Self-Organizing Map (SOM) and the Neural Gas algorithm, with learning parameters tuned 
to perform the training in a one-pass over the sample, that are faster than their batch 
counterparts and that improve them on some benchmark data sets. Although these results 
are too limited to claim any kind of superiority of the One Pass algorithms over their batch 
counterparts, they nevertheless must be taken into account as existence proofs contradicting 
the claim that the batch realizations are faster and more accurate than online algorithms. 

 
Keywords – SOM, Neural Gas, Batch, One pass online 
 
 
1   Introduction 
 
Vector Quantization [9, 10, 12] is a technique that maps a set of input vectors into a finite 
collection of predetermined codevectors. The set of all codevectors is called the codebook. In 
designing a vector quantizer, the goal is to construct a codebook for which the expected distortion 
of approximating any input vector by a codevector is minimized. This task has been tackled by 
with Competitive Neural Networks (CNN) [1]. Among them, the two architectures we focus on in 
this paper: Self Organising Map (SOM) [3, 14, 15] and the Neural Gas (NG) [17].  Both algorithms 
have the appearance of stochastic gradient descent (online) algorithms [8] in their original 
definitions, that is, whenever an input vector is presented, a learning (adaptation) step occurs. It has 
been shown that an online version of the NG algorithm can find better local solutions than the 
online SOM [17].  
So called batch algorithms correspond to deterministic gradient descent algorithms. The adaptation 
is performed based on the whole data sample. As it is well known, one principal attractive of SOM 
is its capability for non-linear dimension reduction based on its topological preservation. Some 
works [3] have pointed its value for vector quantization as a robust initialization step for the fine 
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tuning of the Simple Competitive Learning. The batch version of SOM was already proposed in 
[14] as a reasonable speed-up of the online SOM, with minor solution quality degradations. In the 
empirical analysis reported in [6], the main drawback for the batch SOM is their sensitivity to 
initial conditions, and the bad organization of the final class representatives, that may be due to 
poor topological preservation. Good execution instances of the batch SOM may improve the 
solutions given by the online SOM. On the other hand, the online SOM is robust against bad 
initializations and provides good topological ordering, if the adaptation schedule is smooth enough. 
If the goal of applying the SOM is Vector Quantization, then the topological preservation is not 
relevant, therefore the batch realizations may be of interest. 
Neither the topological preservation nor the final ordering of the codevectors is relevant for Neural- 
Gas. In fact codevectors are updated according to their distance ranking to each input vector in the 
online case, amounting to perform the codebooks reordering for each input presentation. The batch 
version of the Neural-Gas algorithm has been studied in [18] as an algorithm for clustering data. It 
too has been proposed as a convenient speed-up of the online Neural Gas. 
Both the online and batch algorithm versions imply the iteration over the whole sample several 
times. The approach that we propose is top visit only once the sample data: One Pass realizations. 
This adaptation framework is not very common in the neural networks literature; in fact, the only 
related reference that we have found is [4]. The effective scheduled sequences of the learning 
parameters applied to meet the fast adaptation requirement apparently fall far from the theoretical 
convergence conditions. However, as we shall see, in some cases the distortion results are 
competitive with the conventional SOM and Neural-Gas online and batch versions. The results 
presented in this paper must be interpreted as a kind of empirical existence proof of the assertion 
“One Pass realizations may perform equal or better than batch and online realizations” for the SOM 
and Neural-Gas. If we take into account the computation time, the One Pass realization 
improvement becomes spectacular. For independent verification, the Matlab code of the 
experiments described in this paper is available in the following web address: 
 www.sc.ehu.es/acwgoaca/investigacion/proyectos/wsom05.  
Section 2 presents the formal definition of the algorithms. Section 3 gives the experimental results 
and section 4 is devoted to conclusions and discussion. 
 
2   Algorithm definitions 
 
Let it be 

  
X = x1,L,xn{ } the input data sample real valued vectors and Y = y1,..,y c{ } the set of real 

valued codevectors (codebook). The design of the codebook is performed minimizing the 
error/distortion function E: 

E = x i − y k i( )
2

i=1

n

∑ ;     k i( )= argmin
j=1,..,c

x i − y j
2{ } (1) 

Each algorithm described below has some control parameters, like the learning ratio, the 
neighbourhood size and shape, or the temperature. The online realizations usually modify their 
values following each input data presentation and adaptation of the codebook. The batch 
realizations modify their values after each presentation of the whole input data sample. Both online 
and batch realizations imply that the input data set is presented several times. On the contrary, the 
One Pass realizations imply that each input data is presented at most once for adaptation, and that 
the control parameters are modified after each presentation. 
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2.1   One-pass version of Self-Organizing Map and Neural Gas 
 
The SOM is a particular case of the general Competitive Neural Network algorithm:  
 

( )( ))()()(),(H)()()1( ttttttt iiii yxYxyy −+=+ α  (2) 
 
Where t is the order of presentation of sample vectors. We denote by ( )Yx,H i  the so-called 
neighbouring function, and by α i t( ) the (local) learning rate. In the case of a conventional online 
realization, t corresponds to the iteration number over the sample, and the learning rate and 
neighbour value is fixed during iteration. In the case of One Pass realization, t corresponds to the 
input vector presentation number, and the learning rate and neighbour value is updated during 
iteration. In the experiments, the learning rate follows the expression [5]:  

α t( )=α0 αn α0( )
t
n  

(3) 

 
Where α0and αn  are the initial and final value of the learning rate, respectively. Therefore after n 
presentations the learning rate reaches its final value. In the case of the SOM, the neighbouring 
function is defined over the space of the neuron (codevector) indices. In our work, we assume a 1D 
topology of the codevector indices.  The neighbourhoods considered decay exponentially following 
the expression: 
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(4) 

 
The initial and final neighbourhood radius is 0h  and nh , respectively. The expression ensures that 
the neighbouring function reduces to the simple competitive case (null neighbourhood) after the 
presentation of the first 1 8  inputs of the sample. With this neighbourhood reduction rate, we can 
get after a quickly initial ordering of codevectors, a slow local fine-tuning. We proposed this 
scheduling in [11] to approach real-time constraints and other authors have worked with this idea 
[3] in the context of conventional online realizations. 
The Neural Gas introduced in [17] shares with the SOM the structure shown in equation (2) it is 
characterized by the following neighbouring function: 
 

H i x,Y( )= exp − ranking i,x,Y( ) λ( ) (5) 

 
The ranking function returns the position 0,...,c −1{ } of the codevector yi in the set of codevectors 
ordered by their distances to the input x. All codevectors are updated, there are not properly defined 
neighbours, but the temperature parameter λ decays exponentially according to the following 
expression:  

λ t( )= λ0 λn λ0( )
t
n  (6) 

 
Where λ0 and λn  are its initial and final value. The expression ensures that the neighbouring 
function reduces to the simple competitive case (null neighbourhood) as it happens with SOM. 
In the case of his online version, t would correspond to the number presentation, and the 
temperature parameter value would be fixed for all the input samples during a complete 
presentation of the input data set. 
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2.2   Batch version of Self-Organizing Map and Neural Gas 
 
Kononen’s Batch Map [14, 15] defined the batch version of SOM algorithm. Among its 
advantages, there is no learning rate parameter and the computation is faster than the conventional 
online realization. This algorithm can be viewed as the LBG algorithm [16] plus a neighbouring 
function. When the input data set is completely presented, each input sample is classified in the 
Voronoi region defines by the winner codevector yw (t) : 
 

∀i ,1≤ i ≤ c, x(t) − yw (t) ≤ x(t) − yi(t)  (7) 
 
Where t corresponds to the iteration number over the sample and parameter values are fixed during 
iteration. To recalculate the centroid of regions an arithmetic mean is applied to a region and his 
neighbour regions as follow: 

yi(t) = x t( )x t( )∈Ui
∑ n(Ui)  (8) 

 
Where Ui is the union of Voronoi regions corresponding to the codevectors that lie up to a certain 
radius h t( ) from codevector i, in the topology of the codevector indices. And n(Ui )  means the 
number of samples x(t) that belong to Ui. To determine the radius of the neighbourhood we applied 
the following function: 

( ) ( ) 100 −⎥⎥
⎤

⎢⎢
⎡= n

t

n hhhth  
(9) 

 
The expression ensures that the neighbouring function reduces to nh  after n iterations. In the 
experiments, it takes value 0.1, which implies that its operation is equivalent to LBG or k-means: 
the centroid of a region is the arithmetic mean of the input sample that lies in this unique region.  
In the Batch SOM, all neighbours have the same contribution to the centroid calculation, as the 
SOM online realization.  A definition of Batch Neural-Gas arises from the thought of changing the 
contribution to the codebook in function of neighbour-region distances, imitating the online 
realization of Neural-Gas. We produce this effect applying a weighting mean as follows: 
 

yi(t) = x(t)wx(t )x(t )∑ wx(t )∑  (10) 

 
Where wx t( ) is the weighting term for the input samples in the Voronoi region, defined by yi  

codevector, given by expression: 
 

wx(t ) = exp − ranking i ,x t( ),Y(t)( ) λ t( )( ) (11) 

 
The ranking function and temperature parameter λ are equal than in the one-pass case. The 
neighbour-region contribution decays exponentially due to the evolution of λ in equation (6). As 
with the Batch SOM, the Batch Neural-Gas converges to the LBG algorithm: only the region 
corresponding to the codebook contributes to its calculus. 
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3   Experimental results 
 
In this paper, we have done the computational experiments on three 2D benchmark data sets which 
have already been used in [5,7] for evaluation of clustering and VQ algorithms. They are visualized 
in figure 1: (a) S-shaped distribution (b) Three-level Cantor distribution, (c) A mixture of Gaussian 
distributions. 

 

 
  (a)            (b)            (c) 

Figure 1: The three benchmark data sets (a) S-shaped, (b) Cantor set and (c) mixture of Gaussian 
distributions 

 
The first distribution is constructed with 2000 data points that fall on an S-shaped curve defined by 
the equation y = 8x 3 − x , where x is uniformly distributed in the interval [-0.5,0.5]. The three-level 
Cantor set (2048 data points) is uniformly distributed on a fractal; it is constructed by starting with 
a unit interval, removing the middle third, and then recursively repeating the procedure on the two 
portions of the interval that are left. And the third data set is a collection of 500 data points 
generated by a mixture of ten Gaussian distributions with x ∈ −0.5,0.5[ ]2  and σ 2 = 0.001.  The three 
sets are shown in figure 1. 
The codebook initialization used in this paper and reflected in the results of figure 2 is a random 
selection of input sample data. The codebook size is set to c =16 codevectors. The maximum 
number of sample presentations has been established at n = 50 for conventional online and batch 
realizations of the algorithms. Nevertheless, we introduce a stopping criterion on the relative 
decrement of the distortion; the process will stop if it is not greater than ξ = 0.001. For SOM 
algorithms the neighbourhood initial and final parameter values have been set to: 
h0 = c /2+1;  hn = 0.1, and for NG algorithms they have been set to λ0 = c / 2;   λn = 0.01. In both 
one-pass version algorithms the learning rate values are α0 = 0.5 and α0 = 0.005. We have executed 
100 times each algorithm. In figures 2a, b, c we present the mean and 0.99 confidence interval of 
the distortion results of the tested algorithms for each data set. We have also taken into account the 
computation time. In figures 2d, e, f the y-axis corresponds to the product of the final distortion and 
the computation time as measured by Matlab. The algorithms tested are: the online conventional 
realizations of SOM and Neural Gas (NG), the batch versions (BSOM and BNG) and the online 
One Pass realizations (SOMOP and NGOP). The inspection of the figure reveals that the relative 
efficiencies of the algorithms measured by the final distortion depend on the nature of the data. For 
example, the One Pass SOM improves the online and batch algorithms on the Cantor dataset; it is 
similar on the S-shaped data set and falls behind in the Gauss data set. Although this is not the main 
concern of this paper, the distortion results show that the Neural Gas improves the SOM most of 
the times, confirming the results in the literature [17]. The batch realization sometimes improves 
the online realization (Cantor and S-shape), sometimes not (Gaussian). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 2. Results on the three benchmark algorithms. The distortion on the (a) Gaussian data, (b) 

Cantor data set and (c) S-shaped data. The distortion times the computational time for (d) Gaussian 
data, (e) cantor data, and (f) S-shaped data. 

 
 
The main motivation of our work was to compare batch and One Pass realizations, from figures 2a, 
2b  and 2c the One Pass SOM improves the batch SOM in some cases (Gaussian and Cantor) and is 
almost equal in the S-shape data, when all the algorithms behave almost identically. However, the 
One Pass Neural Gas improves the batch realization only on the Gauss data set. 
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When we take into account the computation time in the plots of figures 2d, 2e and 2f, the 
improvement of the One Pass realization over the batch and conventional realizations is 
spectacular. It can also be appreciated the improvement of the batch realization over the 
conventional online realization. We have used the product of time and distortion instead of the ratio 
distortion/time in order to maintain the qualitative interpretation of the plots, because with the latter 
ratio greater would be better, contrary to distortion results. The conclusion from figures 2d, 2e and 
2f is that One Pass realizations may be worth for time critical applications even in the case (not 
appearing in this paper) that the batch or online realizations give much better distortion results.   
 
4   Discussion and Conclusions  
 
As it is pointed out in [13], besides its statistical interpretation as stochastic gradient descent 
algorithms, robust Vector Quantization algorithms, a category where both SOM and Neural Gas 
fall, can be interpreted and analyzed in the framework of Continuation Theory [2]. The key idea in 
continuation methods is to optimize an objective function E by tracking solutions of a family of 
objective functions EP in the limit of P → 0 where EP = E. These procedures primarily try to avoid 
undesired local minima by proposing a family of functions EP increasingly smooth with P. In the 
case of SOM and Neural Gas the limit objective function is the Vector Quantization distortion of 
equation (1). Therefore, the whole learning process is oriented towards the minimization of this 
function, and the successive values of the control parameters correspond to a succession of 
objective functions. Under this interpretation, the conditions in equation (2) are less significant to 
obtain good convergence properties. However, this interpretation is only of application to problems 
where the minimization of the distortion in equation (1) is the goal. It does not apply to problems 
where dimension reduction and topological preservation are the goals.  
We do not claim in this paper any optimality of the learning control parameters schedules for the 
One Pass algorithms. We think that the formal derivation of optimal schedules or the proof of the 
convergence discussion above is outside the scope of the paper. Also, the results are restricted to 
quantification distortion, therefore any discussion involving supervised training algorithms or 
topological preservation is outside the scope of the paper and, in our humble opinion, a confusion 
of terms and computational paradigms.  
It can be argued that our results are of no use if they do not apply to high dimensional data. Let us 
recall that the results presented here are a kind of counterexample proof against the assumed 
superiority of batch algorithms. From our point of view the reasoning we try to rise is: “if the batch 
algorithms do not improve significantly over One Pass realizations in some toy examples, how can 
be asserted that they would be superior in real life high dimensional examples?” The sensible 
reasoning is that the curse of dimensionality will affect both approaches and, therefore, both of 
them will degrade as the data dimensionality increases. We do not know of any formal work 
showing that batch SOM or NG algorithms improve their relative efficiency as the data 
dimensionality increases.  
In this paper we have presented empirical results showing that online One Pass training give 
competitive distortion results, and may even improve, than conventional multiple pass online 
training and batch training. If we take into account the computation time, the performance 
improvement of the One Pass training may be spectacular. We invite the reader to visit the Internet 
address given in the introduction and to download the data and the Matlab code to verify our 
assertions. Additional results, like the visualization of the final codebooks and the topological 
ordering of the SOM solution, or the results under diverse initialization schemas can be found 
there, or can be computed with the code provided. Further work will be addressed to extend the 
computational experiences to other data sets. 
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