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Abstract - An efficient distance preserving output representation is provided to the neural gas net-
work. The nonlinear mapping is concurrently determined along with the codebook vectors. The
adaptation rule for codebook positions in the projection space minimizes a cost function that favors
the preservation of the local topology. The results on several data sets show that the proposed strategy
outperforms alternative methods such as DIPOL-SOM, TOPNG, SOM/NLM and NG/NLM in terms
of the topology preservation measureqm.
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1 Introduction

The self-organizing feature map (SOM) [9] has been widely used for vector quantization (VQ) and
for data projection and visualization. The VQ techniques encode a manifold of data by using a finite
set of reference or “codebook ” vectors. The SOM performs VQ under the constraint of a predefined
neighborhood between neurons in a discrete output grid. In this way the SOM yields a topographic
mapping from the manifold to the output grid. In the conventional SOM the distances between code-
book vectors are not directly represented in the map. Post-processing techniques such as Cluster
Connections [16], P-matrix [20] or U-matrix [21] allow to incorporate the distance information in
the conventional output display by using coloring schemes. Other extensions to the SOM are Adap-
tive Coordinates [16] and Double SOM [18], which allow to visualize the original structure of the
data in a low-dimensional output space without using post-processing techniques. Both models use
a heuristic updating rule to move and group the output nodes in a continuous output space, but they
do not preserve the intra-cluster and inter-cluster distances as well as the Sammon’s mapping [17].
Another SOM extension is DIPOL-SOM [10], which computes a distance preserving projection. The
DIPOL-SOM moves nodes in an additional projection layer by using a heuristic online adaptation
rule that depends on the conventional SOM neighborhood function, as well as on the sign of the dis-
tance preservation error. The quality of the mapping is measured by using the topology preservation
measure defined in [11].
A visualization induced SOM (ViSOM) has been proposed to preserve the interneuron distances in
the map [23][24]. The ViSOM constrains the lateral contraction force between neurons in the SOM,
allowing to preserve the interpoint distances on the input data on the map, along with the topology.
However the ViSOM uses the same fixed grid structure of neurons as SOM, and imposes an uniform
distribution of the codebook vectors in the input space. As a consequence, ViSOM requires a large
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number of codebooks to get an adequate quantization error, which entails a heavy computational
load. The resolution and the computational cost can be enhanced by interpolating a trained map or
incorporating local linear projections [22].
Another enhancement to the SOM is the curvilinear component analysis (CCA) [1]. Firstly, CCA
performs VQ of the data manifold in input space using SOM. Secondly, CCA makes a nonlinear
projection of the quantizing vectors. The projection part of CCA is similar to multidimensional
scaling (MDS) [19] or Sammon’s mapping (NLM) [17], since it minimizes a cost function based
on the interpoint distances. However the computational complexity of CCA isO(N), while MDS
and NLM areO(N2). Another difference is that the cost function of CCA allows to unfold strongly
nonlinear or closed structures. In CCA the output is not a fixed grid but a continuous space that
is able to take the shape of the data manifold. The codebook vectors are projected as codebook
positions in output space, which are updated by a special adaptation rule. An enhanced version of
CCA incorporates curvilinear distances instead of Euclidean distances in the input space [12][13].
The neural gas (NG) is another well-known self-organizing neural network [15]. The main differ-
ence with SOM is that NG does not define an output space. The SOM is able to obtain good VQ
results only if the topology of the output grid matches the topology of the data manifold, which is
usually unknown. As a consequence, NG can outperform SOM when quantizing topologically arbi-
trary structured manifolds. Instead of a neighborhood function in the output grid, the NG utilizes a
neighborhood ranking of the codebook vectors within the input space. In addition, the NG adaptation
rule for codebook vectors obeys a stochastic gradient descent of a global cost function, while no cost
function exists for the SOM adaptation rule [14].
The lack of an output space has limited the application of NG to data projection and visualization.
After learning, the codebook vectors can be projected onto a two-dimensional space using MDS or
Sammon’s mapping. Alternatively, the authors proposed in [8] an online visualization method called
TOPNG, which updates simultaneously the codebook vectors in input space and their corresponding
vector positions in a continuous output (projection) space. The TOPNG adds to NG a simple heuristic
adaptation rule for codebook positions. When TOPNG is combined with particle swarm optimization
the minimum Sammon error is obtained [7]. In a different approach, a cross-entropy embedding of
high-dimensional data using the neural gas model has been proposed [2][3]. This method allows to
project simultaneously the input data and the codebook vectors onto a projection plane, preserving
the relationship defined by the NG neighborhood ranking function.
In this paper we propose a distance preserving nonlinear mapping of the quantizing vectors obtained
with the NG algorithm. The codebook positions are adjusted in a continuous output space by using
an adaptation rule that minimizes a cost function that favors the local distance preservation. The
proposed strategy is online, i.e. the codebook positions are updated simultaneously with the codebook
vectors. The performance of the proposed mapping method is compared with DIPOL-SOM, TOPNG,
NG/NLM and SOM/NLM, in terms of the topology preserving measureqm.

2 The Online Visualization Algorithm

2.1 Problem Setting

Let {xi : 1 ≤ i ≤ M} and{wj : 1 ≤ j ≤ N} beD-dimensional input and codebook vectors, respec-
tively. For a given set of input vectors, our problem is to adjust simultaneously the codebook vectors
in the input space and their respective codebook positionszj (j = 1, . . . , N ) in a A-dimensional
continuous output space, withA << D.



Online Nonlinear Mapping Using the Neural Gas Network

In order to obtain a distance preserving mapping a cost function is defined, which depends on the
difference between the interpoint distances in both the input and the output spaces. Letdj,k andDj,k

be the Euclidean distances defined in the input and the output spaces, respectively:

dj,k = ‖wj −wk‖ =

√√√√
D∑

d=1

(wj,d − wk,d)2, (1)

Dj,k = ‖zj − zk‖ =

√√√√
A∑

a=1

(zj,a − zk,a)2. (2)

In the Neural Gas model, the neighborhood ranking function of the codebook vectorswj , for j =
1, · · · , N , with respect to a given input vectorxi, is defined as follows:

hλ(xi, wj) = e
−r(xi, wj)

λ(t) , (3)

wherer(xi, wj) ∈ {0, 1, . . . , N − 1} denotes the rank of thejth codebook vector, and the parameter
λ controls the width of the neighborhood function. Likewise, for mapping purposes it is convenient
to introduce a ranking of the codebook positionszj , j = 1, · · · , N , with respect to a given output
vectoryi. The terms(yi, zj) ∈ {0, 1, . . . , N−1} denotes the rank of thejth codebook position. Here
r = 0 ands = 0 are associated with the nearest codebook vector and the nearest codebook position,
respectively.

2.2 New Position Adaptation Rule

A global cost function similar to the one used by CCA [1] is introduced:

E =
1
2

N∑

j=1

∑

k 6=j

(Dj,k − dj,k)2F (sj,k) =
1
2

N∑

j=1

∑

k 6=j

Ej,k, (4)

where the weighting functionF (sj,k), is a bounded and monotonically decreasing function, in order to
favor local topology preservation, since a perfect matching is not always possible when making a low-
dimensional embedding of high-dimensional data. The eq. (4) could be minimized with respect tozj ,
by using stochastic gradient descent. In that case a codebook position would be adjusted according to
the sum of every other codebook influences. The complexity of such an algorithm isO(N2). Instead
in our method, the codebook position associated to the winner unit,z∗j (t), is fixed, and all the other
positions are moved towards the winner’s position, disregarding any interaction among them, thus
reducing the complexity toO(N). Using this method the cost function will decrease on average as
shown in [1]. This approach is similar to CCA, but CCA is an offline method since it performs the
nonlinear mapping after the codebook vectors have been learned by SOM. Our approach is online
and it uses NG as a vector quantizer instead of SOM. Another difference is that in our approach the
weighting functionF in (4) is an exponential function of the ranking of position vectors in the output
space, while in CCA the weighting functionF is a step function of the interpoint Euclidean distances
in output space. In order to minimize (4), the derivative of the local objective functionEj,k with
respect to position vectorzj is calculated by utilizing the chain rule as follows:
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∂Ej,k

∂zj
= F (sj,k)

(Dj,k − dj,k)
Dj,k

(zj − zk), (5)

where the quantized functionF is considered constant with respect to the variation of the codebook
positionszj(t), independent of the choice ofF and the distance measurement in output space.
Consequently, the updating rule for the codebook positions is as follows:

zj(t + 1) = zj(t)− α(t)F (sj,k)
(Dj,k − dj,k)

Dj,k
(zj(t)− zk(t)), (6)

whereα(t) is the learning rate, which typically decreases with the number of iterationst.

2.3 Learning Algorithm

The initial topology of the network is a set ofN neurons. Thejth neuron has associated aD-
dimensional codebook vector,wj , and a two-dimensional codebook position,zj (j = 1, . . . , N ).

1. Initialize the codebook vectors,wj , and the codebook positions,zj , randomly.

2. Present an input vector,xi(t) to the network (i = 1, . . . , M ) at iterationt.

3. Find the best matching unit (BMU),j∗ using:

j∗ = argminj=1...N‖xi(t)− wj(t)‖, (7)

and generate the rankingr(w∗j (t), wj(t)) ∈ {0, 1, . . . , N − 1} for each codebook vectorwj(t)
with respect to the winnerw∗j (t).

4. Update the codebook vectors:

wj(t + 1) = wj(t) + ε(t)hλ(t)(xi(t)− wj(t)), (8)

wherehλ(t) = hλ(xi,wj) is the neighborhood function defined in (3), andε(t) is the learning
rate. In our experimentsε(t) was decreased linearly from 0.3 to 0.0001 in3000×M iterations.

5. Generate the rankings(z∗j (t), zj(t)) ∈ {0, 1, . . . , N−1} for each codebook positionzj(t) with
respect to the codebook position associated to the winner unitz∗j (t).

6. Update the codebook positions:

zj(t + 1) = zj(t) + α(t)F (s(z∗j (t), zj(t))
(Dj,j∗ − dj,j∗)

Dj,j∗
(zj∗(t)− zj(t)). (9)

Alternatively F (s(z∗j , zj)) could be changed toF (r(w∗j , wj)) in (9). In both casesF (f) is
defined as

F (f) = e
− f

λf , (10)

whereλf is a user-defined constant. Hereα(t) was set the same way thanε(t).

7. If t < tmax go back to step 2).
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2.4 Mapping Quality

The topology preservation measureqm defined in [11] is considered as a performance measure. It is
based on an assessment of rank order in the input and output spaces. Then nearest codebook vectors
NNjiw (i ∈ [1, n]) of each codebook vectorj, (j ∈ [1, N ]) and then nearest codebook positions
NNjiz of each codebook positionj are computed. The globalqm measure is defined as:

qm =
1

3nN

N∑

j=1

n∑

i=1

qmji , (11)

where

qmji =





3, if NNjiw = NNjiz

2, if NNjiw = NNjlz , l ∈ [1, n], i 6= l
1, if NNjiw = NNjtz , t ∈ [n, k], n < k
0, else.

(12)

Typical parameter settings aren = 4 andk = 10. The range of theqm measure is between 0 and 1,
whereqm = 0 indicates a poor neighborhood preservation between the input and output spaces, and
qm = 1 indicates a perfect neighborhood preservation.

3 Simulation Results

In this section, the simulation results obtained with the proposed model, called OVI-NG (Online VI-
sualization Neural Gas), are presented. For comparison purposes, the results obtained with the online
strategies DIPOL-SOM and TOPNG, and the offline strategies DIPOL-SOM offline, SOM/NLM and
NG/NLM are also presented. A variant of our model is considered, called OVI-NG-2, where the
weighting functionF (r) is used in (9) instead ofF (s).
Four different data sets were considered: Iris, Sleep, Fraud, and Wood. The parameterλf in (10)
was set to 12.5, 50, 75, and 100, for each data set, respectively. The number of codebooks was set
to 70, 200, 300, and 400, for each data set, respectively. The Iris data set contains 150 samples, with
4 attributes, distributed in three types of Iris flowers. The Sleep data set contains features extracted
from polysomnographic recordings [4]. The Sleep data set contains 6463 samples, with 6 attributes
and 6 classes. The Fraud data set has information about telephone subscribers [5], and contains 10624
samples, with 26 attributes and 3 classes. The Wood data set contains features extracted from 16800
color images of wood surface defects [6], with 64 attributes and 11 classes.
Fig. 1 shows the codebook positions obtained for the Iris data set with DIPOL-SOM, NG/NLM,
OVI-NG-2, and OVI-NG. Figs. 2a and 2b show the codebook positions obtained for the Sleep data
set with OVI-NG-2 and OVI-NG, respectively. Figs. 2c and 2d show the codebook positions obtained
for the Fraud data set with OVI-NG-2 and OVI-NG, respectively. The position vectors were labelled
with the majority class of the input vectors present in the Voronoi cell of the corresponding codebook
vector. If the percentage of input vectors of the majority class is greater than a given threshold, the
node is marked with the number of that class. Otherwise, the node is represented by a black ball with
an exclamation sign inside. If the node wins no input vectors, it is marked with a number 0.
Fig. 3a shows the topology preservation measureqm as a function ofλf for both the OVI-NG and the
OVI-NG-2 algorithms, with the Iris data set. The maximumqm value is obtained forλf = 12.5. Fig.
3b shows the topology preservation measureqm as a function of the number of codebook vectors for
both the OVI-NG and the OVI-NG-2 algorithms, with the Iris data set.



WSOM 2005, Paris

1
1

1

1

0

2

2

1
1

1
1

0

2
2

1
1

1

0

2

2

3

1
1

0

2
2

0

!

1
1

0

2
2

0
!

1
1

0

2

2

!

3

1

0

2

2
3

3

3

0

2

2

3
333

2
2

0

3
3

3

3

2
2

33

3

3

3

(a)

3

3

3
2

1

2

1 2

2

2

1

3

1

1

31

!

1

1
2

1

2

1

3

3

3

1

3

1 3

3

1

3
1

!

3

1

0
3

1

2

1

3

2

1

1

1

1 !

3

2

2
2

2 3

3
!

3

3

1

2

2
0

3

2

2

1

1

3

2

(b)

3

3

2

0

1

3

1
!

1

2

1

2

3

1

3

3

2
1

2

1

2

2
3

1

1

2

2 1

2
2 1

1

3

!

2

1

1

2

3

3

3

3

3

1

3

0

12

!

3

1

1

2

1

1

1

3

2

1

2
0

3

3

3

3

1

0

0

2
1

(c)

0

2

!

1

0

2

3

3

2

2

1

3
2

2

1

!

1
1

3

2

2

0

3

3
!

0

2
2

2

2

3

1

2

1

1

1

3

!

3

1

11

1

2

3

2

3

3

1

1

2

3

2

3 3

1

3

1

3

1

3

2

1

3

1

!

1

1

3

1

(d)

Figure 1: Iris data set (150x4) projection results using 70 neurons (position vectors): (a) DIPOL-SOM online,
(b) NG/NLM, c) OVI-NG-2, d) OVI-NG.
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Figure 2: Projection results using 200 neurons (position vectors) for the Sleep data set (6463x6) and 300
neurons for the Fraud data set (10624x26): (a) OVI-NG-2 (sleep), b) OVI-NG (sleep), c) OVI-NG-2 (fraud),
and d) OVI-NG (fraud).
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Figure 3: Topology preservation measureqm as a function of a)λf and b) the number of codebook vectors for
λf = 12.5, for both the OVI-NG and OVI-NG-2 algorithms applied to the Iris data set.
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Table 1: Topology preservation measureqm for the different algorithms and data sets considered.

Algorithm Iris Sleep Fraud Wood
OVI-NG 0.8298± 0.0120 0.6029± 0.0015 0.4817± 0.0182 0.3467± 0.0114

OVI-NG-2 0.8198± 0.0138 0.5979± 0.0188 0.4622± 0.0111 0.2977± 0.0019
Dipol-SOM online 0.7405± 0.0235 0.5214± 0.0288 0.3068± 0.0236 0.2219± 0.0187
Dipol-SOM offline 0.7669± 0.0063 0.5107± 0.0395 0.3123± 0.0318 0.2179± 0.0227

SOM/NLM 0.7712± 0.0114 0.5746± 0.0143 0.4461± 0.0301 0.3107± 0.0219
NG/NLM 0.6988± 0.0154 0.5545± 0.0065 0.3614± 0.0080 0.2054± 0.0267
TOPNG 0.6812± 0.0064 0.5219± 0.0051 0.3912± 0.0057 0.2483± 0.0051

Table 1 shows theqm value averaged over 5 simulation runs, and the standard deviation, for the
7 algorithms considered. For all data sets, the proposed OVI-NG method obtained the highestqm

value, yielding the best topology preservation.

4 Conclusions

The proposed OVI-NG method provides an output representation to the neural gas model that is useful
for data projection and visualization. The OVI-NG is an online method that concurrently adjusts the
codebook vectors in input space and the codebook positions in a continuous output space. The method
is computationally efficient withO(N) complexity. The position adaptation rule minimizes a cost
function similar to CCA, which favors the local topology. In this sense, the OVI-NG method could
be regarded as online CCA but other differences include the use of a neighborhood ranking instead of
Euclidean distances in both the output and input spaces, and the use of NG instead of SOM as vector
quantizer. For all data sets, the OVI-NG method obtained the best results in terms of the topology
preservation measureqm. In future research, the OVI-NG could be extended to map all data points
in an efficient way, using the codebook vectors and their positions as a reference. Another possible
extension is to incorporate curvilinear or graph distances, in order to unfold strongly nonlinear maps.
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