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Abstract - Various forms of the self-organizing map (SOM) have been proposed as models
of cortical development [11, 2, 7]. Typically, these models use weight normalization to con-
tain the weight growth associated with Hebbian learning. A more plausible mechanism for
controlling the Hebbian process has recently emerged. Turrigiano and others [14] have shown
that neurons in the cortex actively maintain an average firing rate by scaling their incoming
weights. In this work, it is shown that this type of homeostatic synaptic scaling can replace
the common stop-gap measure of standard weight normalization. Organized maps still form
and the output neurons are able to maintain an unsaturated firing rate, even in the face of
large-scale cell proliferation or die-off. In addition, it is shown that in some cases synaptic
scaling leads to a better representation of the input probability distribution.
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1 Introduction

The self-organizing map (SOM), in its various forms, has been a useful model of cortical
development [11, 2, 7, 10]. Sirosh and Miikkulainen [11] showed the simultaneous development
of receptive field properties and lateral interactions in a realistic model. The usefulness of the
developed lateral connections was shown by Choe and Miikkulainen [2] for contour integration
and segmentation. It is this lateral connectivity that ensures the neighboring neurons come
to respond to similar stimuli and form a good map.

In these models, Hebbian learning is used to strengthen associations between stimuli and
winning neurons. This type of associative learning has been well-documented in the exper-
imental literature [1, 6], but our understanding has remained incomplete. It is well known
that the most straight-forward implementations of Hebbian learning lead to unconstrained
weight growth. To counteract this problem, typical SOM algorithms use weight normaliza-
tion: after each learning iteration all the weights are divided by the sum of each neuron’s
incoming weights. It has been argued that this type of weight normalization is biologically
plausible. For example, a neuron might have a finite resource necessary for maintaining in-
coming synapses. This might keep an upper limit on the total summed size of the incoming
synapses. While this sounds within the realm of biological possibility, and is obviously help-
ful in keeping Hebbian learning in check, little evidence from the experimental literature is
available for support.

A more plausible mechanism for controlling the Hebbian process has recently emerged.
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Turrigiano and others [14, 9, 13] have shown that neurons in the cortex actively maintain an
average firing rate by scaling their incoming weights. The mechanism has been examined in
cultures and in other experiments using in-vivo visual deprivation. It has been shown that
the incoming synapses are altered by a multiplicative factor, which presumably preserves the
relative strengths of the synapses. The underlying mechanisms are not yet known, but there is
ongoing research looking at intracellular chemical factors such as calcium and brain-derived
neurotrophic factor (BDNF) [14]. The level of these factors are related to firing rates, so
integrating them over time could lead to an estimate of average firing rate and produce a
chemical signal for synaptic change. Another interesting finding is that a neuron with high
average firing rate will decrease the strength of incoming excitatory synapses, but increase
the strength of incoming inhibitory neurons [9]. While many details are yet to be worked out,
the homeostatic synaptic scaling mechanism is an interesting candidate to constrain weight
growth.

2 Architecture with Homeostatic Synaptic Scaling

The SOM model is trained with a series of episodes in which randomly selected input vectors
are presented. At each step, the input vector, Z, is first multiplied by the feedforward
weights, Wrp. In order to get the self-organizing map effect, this feedforward activity is then
multiplied by a set of lateral connections, Wiy, as in:

g = f[VVlat(WFFf)}

Here f[a] = maxz(0,a) and Wy, is preset to a Mexican hat shape. In this version the lateral
connections are not updated with learning. After the output activity is set, the feedforward
weights are updated with a Hebbian learning rule:

ﬁ)fj = wfj_l + am?yf
« is the Hebbian learning rate, x; is the presynaptic activity and y; is the postsynaptic
activity.

It is this type of Hebbian learning rule that would normally give problems. Since each
update is positive, there is nothing to limit the growth of the weights. Normally, a weight
normalization is used that is based on the sum of the magnitude of the weights coming into
each neuron. In our case, we will normalize the weights with a value based on the recent

activity of the neuron:

ﬂ)fj . t Z;;,i - Atarget
, ActivityNorm; = 1+ On/(

Wl = —— )
7 ActivityNorm Asarget

Here, Ayqrget is the internally defined preferred activity level for the neurons, Aqyq; is the
average of recent activity for neuron i, and By is the homeostatic learning rate. This model
assumes that some intracellular chemical, such as calcium for example, is integrated over the
recent past and is related to the average firing rate. If the target level of this chemical is
exceeded, the incoming synapse sizes will be decreased multiplicatively. If the target is not
achieved, the synapses will be increased. Since the underlying relevant chemicals and their
dynamics are not yet known, we instead use the average firing rate and firing rate target
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value directly in computing ActivityNorm. In the model, each neuron keeps track of its
average output firing rate, Afwm, with a running average over the recent past. This is a local
computation, in the sense that each neuron keeps track of its own average firing rate. If this
average, or difference from the target, is expressed as an internal level of some chemical all

the synapses would conceivably have access to that information. Using the A, and Ajqrget

avg,i
values directly avoids modelling the concentrations of unknown chemicals, but as more details

become available through experiments, the model can become more explicit.

3 Simulation Results

Self-organizing maps were simulated using the synaptic scaling described with the previous
equations. In other work, we show how to find the range of effective learning rate parameters,
[12] so only values in this range are used here.

3.1 Homeostasis and Map Formation

In order to verify proper formation of a map, a network was created with 150 inputs and 15
outputs. The input vectors are specified by a 1-D gaussian shape (standard deviation o of 15
units). The input gaussian is centered on one of the input units, selected uniformly at random.
Plots of typical network behavior are shown in Figure 1. In the left-most plot, the average
firing rate of the output neurons is shown. As the simulation progresses the average neuron
firing rate approaches Aqrget. For each input, if we view the most active output neuron as the
winner, then we can keep track of the neurons’ winning percentages. The center plot shows
these winning percentages for all the output neurons. It can be seen that they approach a
roughly equal probability of winning. The right-most plot shows an input-output map that
has formed after training has ended. To obtain this plot, every possible input was presented
to the network, one at a time. The winning output neuron (the one with the highest output
rate) was then recorded for each input. The input number is shown on the x axis, and the
corresponding winning output is plotted. This is a good map since similar inputs (inputs
whose center is located on neighboring input units) correspond to nearby winning output
units.

Average Neuron Activities Average Winning Percentages Learned Map

Winning Percentage
Winning Output
©

Activity (Running Average)

0.08 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140

Time Sample Time Sample Input Number

Figure 1: Typical Behavior. 150 inputs, 15 outputs, ring topology, a = 8.3x10™%, By = 3.3x10 %, and
Atarget = 0.1 Hz (Left). The average neuron activities are driven to the same value. A running average of the
firing rate is shown. (Middle). The winning percentages of each of the neurons is shown. They converge to
a roughly equal winning frequency. (Right). A smooth input-output map if formed. For each possible input,
the output winner (the neuron with the maximum firing rate) is plotted. Both the inputs and outputs are
arranged in a ring configuration to eliminate edge effects (so Output 1 is next to Output 15, for example).
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3.2 Synapse Proliferation

Homeostatic mechanisms that maintain a steady output firing rate may play a particularly
important role during development. As many neurons and synapses are added and pruned
away, the total amount of input drive to a neuron will change dramatically. In order to avoid
having a saturated firing rate, neurons must regulate themselves.

In order to test the ability of homeostatic synaptic scaling to withstand dramatic changes in
network architecture, we created a simulation in which the number of input neurons doubled
after learning had begun. The network started with 75 input neurons. After the average
neuron activities settled to a constant value, 75 more inputs were added, as shown on the left
side of Figure 2. After the neuron activities settled again, the 75 added inputs were taken
away. This is a simple example meant to simulate the large scale neuron proliferation and
die-off seen during cortical development.

The effect on the average output activities is shown in the middle of Figure 2. When
the number of inputs was changed, the average firing rate of the output neurons changed.
The firing rates quickly returned to the target value in the network with the homeostatic
mechanism. Furthermore, the continuity (smoothness) of the map was unaffected. The
network using standard weight normalization has its average output firing rate permanently
changed by the additional (or subtracted) neurons. Real neurons with output nonlinearities
could have their outputs saturate with such changes in input drive. This highlights the
important role that homeostatic synaptic scaling may play during development. Additionally,
during normal functioning in a hierarchical system such as the visual cortex, one area’s output
is another’s input. For the benefit of higher areas, it may be important for neurons to maintain
a consistent firing rate level.
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Figure 2: Addition of New Inputs. (Left). Ten additional inputs were added halfway through learning.
(Middle). The average neuron activity is disturbed when new inputs are added or taken away, but the average
quickly recovers if the homeostatic mechanism is used. (Right). For both cases, a smooth input-output map
is preserved after neuron proliferation and die-off.

3.3 Probability Representation

Computer simulations were run that compare networks using homeostatic scaling with net-
works using standard weight normalization. Networks of neurons that maintain their own
average firing rate avoid the problem of dead units that don’t respond to any input and
overactive neurons. Intuitively, it seems that networks of this type might get more out of
their neurons and thus increase their information transfer. This thought is reminiscent of
networks that explicitly try to obtain maximum information, such as the works of DeSieno
[4] using a Conscience mechanism and Linsker [8] using information maximization. In both
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of these examples, though, global information is needed at the synapses. Perhaps the home-
ostatic mechanism, or some variant, can approximate information maximization within a
biologically-realistic framework. This idea is tested here by comparing network performance
with inputs drawn from several probability distributions.

Since our networks do not have a winner-take-all output, there is no obvious winner for
each input. For sake of comparison, we will define the winner as the neuron with the highest
output rate. In this way we can find the probability of winning for each output neuron, and
then calculate the entropy of this vector of probabilities. For our network with population-
coded outputs, it may not be completely fair to measure information in this way, but for a

x 10 Input Probability Density Discontinuity Test Learned Map (Weight Normalization)
12 0.5
14
1 @
<" L 12
a 2 s
£ = g 10
5 8 g £
2 =
2z 2 05 s
= a 5
Qo o
< 6 » £
8 8 36
& 5 -
4 w 4
-1 =] 0 2 .
% 50 100 150 10 10 20 40 60 80 100 120 140
Ipha,
Input Number alpha, Input Number
Probability Density Representation Entropy Test Learned Map (with Homeostasis)
0.2 0.1
- % - Weight Normalization 2 4 —6— Homeostatic Mechanism 14
—6—Homeostatic Mechanism 2 0.12 —&— Weight Normalization
o — Ideal Probability k< 12
£015 )
£ i g 49
= ,Ks N S 0.06 £
b ;T s [} =
0.1 1 N N | 8
> Ay =
) ' \ }//‘: [ 2 006 2
§ A A Xoe - g 6
2005/ PN - e
o Piohd * . 4
[ RV % 0.02
=
0 = o 2
LR 10 12 14 10 10 20 40 60 80 100 120 140

gutputBNeuron alpha, Input Number

Figure 3: Performance Comparison on 150x15 Map with Step Input Distribution. (Top Left). The
center of the input patterns were drawn from this step distribution in which half of the potential
inputs were three times more likely than the others. The input patterns were gaussian shapes with
a standard deviation o width equal to 15 input units. (Bottom Left). For one simulation for each
case (standard weight normalization (WN) and the homeostatic mechanism (HM)), the actual output
winning probabilities are shown. The weight normalization case has large errors at the steps in the
input probability densities. (Center). Two measures of map quality were compared for WN and HM.
The Hebbian learning rate, a, was varied over a wide range. Each point is the average of five separate
computer simulations. (Top Center). The number of discontinuities in a given an input-output map
(as in the bottom panels) were counted and subtracted from the number of output units. A smooth
map that utilizes all the outputs will have a Discontinuity Test score of 0. Both WN and HM have
the same perfect performance. (Bottom Center). For a large number of randomly chosen inputs,
the output unit with the highest activation was called the winner. The entropy of the output unit
winning probabilities was computed and subtracted from the highest possible entropy (all winning an
equal number of times). The best value is zero. The homeostatic mechanism had entropy that was
closer to maximum (and thus higher information content) in all cases. (Right). For the simulation
whose results are depicted on the middle right panel, the final input-output maps are shown with (Top
Right) WN and (Bottom Right) HM. For reference, the cumulative distribution of the input is plotted
with a dashed line. The network with the homeostatic mechanism has learned a mapping that better
matches this distribution, and thus increases the output entropy.
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first approximation it might be helpful.

The first example, whose results are shown in Figure 3, uses networks with 150 inputs
and 15 outputs. The learning rates and target output rates were set the same as above.
The inputs are drawn from a step function with half the inputs being unlikely, while the
other half are more likely (as seen in the top right panel). In this case, the network with
homeostatic scaling has consistently better performance as measured by output entropy (see
top right and middle right panels). The top right panel shows the probability of winning for
each output neuron for one simulation. This was obtained by tested the trained network on
a representative set of inputs. The difference in performance between the two network types
is due to the shape of the input-output map that forms (bottom panels).

Several more networks were tested using different input distributions. For these simula-
tions, networks of 750 inputs and 75 outputs were used. Typical results for each distribution
are shown in Figure 4. For each row, the type of input distribution is shown on the left. The
middle panel shows the probability of winning for each output neuron. The dark line repre-
sents the network with the homeostatic mechanism, and the dashed line gives the network
with standard weight normalization. A faint line gives the ideal output winning probability,
which is 1 divided by the number of output units. To the right of the plotted probabilities
are the resulting entropy measures. These numbers are the difference between the entropy
of the output probabilities and the maximum entropy for this network, making zero the best
possible value.

In three out of four cases, the network with the homeostatic mechanism had better per-
formance. The network with standard weight normalization was slightly better in the second
case. Interestingly, this ramp-like distribution caused the homeostatic mechanism to converge
to a state in which some neurons rarely won (had the most activation). These output neu-
rons received enough activation from neighboring winners that their target activity goal was
achieved. In other words, all neurons had similar average activities, but some neurons rarely
“won”. Also interesting were the results of the last distribution. This was the same input
step distribution used in the example above. As the network size increased, performance gets
worse for both networks. This is again due to the algorithm optimizing for average firing
rate, not average winning percentage. The discrepancy between these measures, especially in
the regions of low probability, should be interesting grounds for future investigation.

4 Conclusions

In this work, we have proposed a way to go beyond the standard weight normalization. This
long-used measure has worked to counteract the unconstrained growth of Hebbian learning,
but there is little evidence from experiments that justifies its use. Homeostatic synaptic
scaling, on the other hand, has been seen recently in biological experiments. It has been
shown here that using homeostatic synaptic scaling in place of standard weight normaliza-
tion still leads to proper organized map formation. In addition, the neurons are able to
maintain their average firing rates at a set point. This helps them from becoming saturated
as neurons are added or taken away, as happens during development. Finally, it was shown
that synaptic scaling in some cases leads to a better representation of the input probability
distribution compared with weight normalization. This observation suggests the intriguing
possibility that this homeostatic mechanism helps drive the network to a state of increasing
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Figure 4: Examples with Various Input Density Distributions. Each panel shows the results of simula-
tions with the two networks (Standard Weight Normalization (WN) and the Homeostatic Mechanism
(HM)) using a different input distribution. Within each panel, a diagram shows the input distribution
in the upper left. To the right, the probability of winning for each output neuron is plotted. The dark
line represents HM, and the dashed line shows WN. A faint line gives the ideal output probability,
which is 1 divided by the number of output units. The two numbers presented on the bottom left are
the resulting entropy measures. These numbers are the difference between the entropy of the output
probabilities and the maximum entropy for this network, making zero the best possible value. In three
of the four examples, HM performs better than WN.

information transfer.

The output entropy was measured using the probability of each output neuron having the
highest activation. This may not be the most natural way to measure information transfer in
this network, since a population code is used as the output. Indeed, since the neurons’ goal is
to maintain a useful average firing rate, information transfer may not be the most important
measure of performance. These issues will be addressed in future work. The algorithm will
also be tested more extensively with two-dimensional input and output spaces. An interesting
challenge is how to integrate this mechanism into existing models of cortical development
like the LISSOM [11] and if it will lead to increased performance in practical applications
[3]. How this homeostatic mechanism interacts with other synaptic modifications like short-
term adaptation [5] and long-term depression (LTD) [6] will also be interesting avenues for
investigation.

This material is based upon work supported by the National Science Foundation under NSF
Career Grant No. 0133996 and was also supported by NSF IGERT Grant #DGE-0333/51
to GW Cottrell.
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