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Abstract – The use of neural networks in computer game AI is a rapidly expanding area of academic 
research; however, the games industry has been slow to adopt new techniques, and one reason behind 
this is the scarcity of computational resources in modern games. The Sony PlayStation 2® provides 
parallel hardware features that can be exploited to implement a highly optimized SOM. This paper 
summarises the main hardware features of the platform, and presents some optimizations that can be 
made to the SOM algorithm to tailor it to the hardware. This work makes the SOM a viable option for 
AI in games, where processing resources are used intensively. The principles presented are also 
applicable to other modern parallel processors such as “The Cell,” and is therefore relevant to the 
next generation of games consoles and other devices.  
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1 Introduction 
 
For several years now, it has been predicted [1,2] that online learning in games will be the “next big 
thing” in game AI; however, this prediction has still to be realized. A recent review [3] cited some of 
the few successful commercial games that have employed online neural network learning as part of the 
game AI, and also summarized several principal reasons why the industry has been reluctant to use 
neural networks. One of the perceived problems is that the computational cost of neural networks is 
prohibitively high, especially since most games use the vast majority of processing resources on the 
graphics pipeline. Even though the SOM has a relatively low computational cost when compared with 
some other neural networks (during training and with subsequent use), this is still a factor that has 
deterred its use in games. 
 
The PlayStation 2, which will hereafter be referred to as the PS2, currently holds greater than 60% 
share of the home video games market, and offers parallel processing features that are often not fully 
exploited. This paper shows how the specialist hardware of this platform can be used for the SOM. 
Firstly, we give a brief introduction to the hardware features of the PS2, and then we describe 
implementations of low-level operations used with the SOM and its common variants, fine-tuned for 
the PS2. Finally, we discuss the use of the PS2’s DMA controller for caching codebook vectors and 
input/output data, using the double-buffer used by one of the vector operation processors. This feature 
allows significant optimizations to be made to the SOM, which are not possible with many other 
neural networks.  
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2 Overview of the Emotion Engine 
 
The “emotion engine” (EE) [4] is the CPU of the PlayStation 2, although this unit is actually 
composed of several processors. Fig 1 shows some of the main components that make up the EE, 
along with its connection to the Graphics Synthesizer (GS), which is viewed as external to the EE. The 
EE core is the CPU of the EE, which runs the MIPS III (and partly MIPS IV) instruction set. This unit 
is also connected to a floating point co-processor (COP1). In addition to instruction and data caches, 
the EE core has 16kb of scratchpad RAM, which can be used to reduce accesses to main RAM, 
leaving the main bus for use by the other processors and the DMA controller (DMAC).  
 
Two vector operation processors (VPU0 and VPU1) are provided for processing 4-dimensional 
vectors and 4x4 matrices. These units are described in more detail in the next section. The Graphics 
Interface Unit (GIF) is a device that arbitrates between the three data paths from VU1, VIF1 and the 
main bus, and passes data on to the GS in the form of 2D drawing primitives. The components are 
connected by a 128-bit main bus, which runs at 300 MHz. The DMAC provides nine DMA channels 
that transfer data between main RAM and the various other components of the system.  
 

 

Fig. 1. The architecture of the emotion engine (EE). (Not all components are shown.) 

2.1  Vector Operation Processors (VPU) 
 
The EE has two specialized processors designed for processing 4-dimensional homogenous co-
ordinate data for 3D graphics. These units are composed of a vector unit (VU), which is the vector 
processor, and a VU interface (VIF). The main purpose of the VIF is to decompress data, so that it can 
be held in a more compact format in main RAM before being transferred and expanded into VU data 
memory. Both VUs have 32 128-bit registers, 16 16-bit integer registers, and four floating point ALUs 
(a.k.a. FMACs), which operate in parallel. The 128-bit registers hold four 32-bit floating point values 
in fields labelled x, y, z and w. Both VUs can operate in “micro mode” which means that they execute 
micro-programs stored in their instruction memory, but VU0 can also work in “macro mode”, which is 
where it behaves as a second co-processor for the EE core. In micro-mode, both vector units have two 
parallel execution units, allowing simultaneous execution of some instructions. VPU1 has 16k of 
instruction memory and 16k of data memory, but VU0 has only 4k of each. Unlike VU0, VU1 can 
send geometry data directly to the GIF/GS without the need to use the main bus. 
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The VU instruction set caters for conditional branching, integer arithmetic, random number 
generation, fixed/floating point and integer conversion, view frustum clipping, synchronization and 
parallel floating point arithmetic including product-sum calculations. VU1 has in addition to these 
features, an elementary function unit (EFU) for performing trigonometric, exponential and logarithmic 
operations. Some of the EFU functions take far longer to perform than the basic arithmetic operations; 
therefore the EFU should not be over-used. It is possible for VU1 to schedule EFU computations, and 
then continue running other non-EFU instructions whilst waiting for the result. 
 
2.2  Processing Pipeline 
 
With a parallel architecture such as that provided by the EE core, there are various strategies that could 
be employed to efficiently use the available processors. There is no globally optimum strategy; the 
most suitable choice is application-specific. Games and 3D graphics engines that use the PS2’s 
hardware efficiently generally employ the same strategy, which is described in table 1 below. 
 

EE core & COP1 Game logic, AI, animation, user input processing, resource 
management (RAM, textures, etc), culling, scene-graph 
management, control of EE components. 

VU0 Transformations to world and camera space, lighting. 
VU1 Transformation to homogeneous and screen space, clipping, 

particles and other special effects. 

Table 1. Use of the EE’s processors in the pipeline of games using 3D graphics. 
Games generally iterate around a main loop, with each iteration producing a rendered frame in the 
frame buffer. The pipeline is mainly a linear process; most of the tasks outlined in table 1 must be 
performed in a sequence due to the dependencies of later tasks on earlier tasks. The pipeline can be 
parallelized by using streaming to simultaneously render frames. Therefore, in rendering a frame, the 
EE core performs some tasks, and the output is then passed to VU0, which then performs more tasks, 
the results of which are subsequently passed to VU1. As soon as a processor passes the data for a 
frame on to the next processor, it can commence processing for the next frame, and it is common to 
processes two or three frames simultaneously. 
 
3 Using the Vector Units for the SOM 
 
In the previous section, we noted that AI is normally processed in the EE core, which is the most 
suitable processor for symbolic AI tasks such as tree traversal and searching. However, for 
computational methods such as the SOM, the vector units offer better facilities for two reasons: firstly, 
unlike COP1, they support parallel floating point operations (COP1 has only one FMAC), and 
secondly, the EFU contained in VU1 provides hardware support for mathematical functions that can 
be used for non-linear distance measures, probability distribution functions and neighbourhood 
functions. Another feature that can be beneficial is the provision of hardware pseudo-random number 
generators in both vector units. We will now consider these benefits in more detail. 
 
3.1   Euclidean Distances between Points 
 
As stated before, the VUs are designed for 4-dimensional vectors and 4x4 matrixes, hence the four 
FMACs in each VU. However, matrices and vectors of any size can be processed, and the following 
example shows the calculation of the Euclidean distance between an eight-dimensional codebook 
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vector and input vector. In listing 1, the input vector is supplied in three registers with labels “input1-
3,” “input4-6” and “input7-8”. Three registers are required since the w field of these registers is not 
used because the “sub” instruction that we will use works only on the x, y and z fields. The codebook 
vector is supplied using the registers with labels “codebook1_1-3,” “codebook1_4-6” and 
“codebook1_7-8.” Line 1 clears the contents of the register labelled “sum,” which we will use to store 
some intermediate results and the final result. The second line subtracts the first three dimensions of 
the input vector from the codebook vector. These are squared and added together in line three, and the 
result is placed in a special register “P”. The result can be copied from the P register into the x field of 
the register labelled “sum.” Lines 5-7 and 8-10 perform the same operation for dimensions 4-6 and 7-8 
respectively, storing the result in the y and z fields of “sum.” Lines 11 and 12 perform the addition of 
the x, y and z fields of “sum”, and store the result in the x field of “sum.” Finally, the square root is 
calculated on line 13, and the final result is placed in the x field of “sum.” The code is written for the 
VCL pre-processor, which is a tool widely used by PS2 developers to perform register allocation and 
scheduling of instructions for the dual execution units. 
 
 1 add.xyzw sum, vf00, vf00      ; clear the contents of sum 
 2 sub.xyz   diff1_1-3, codebook1_1-3, input1-3 
 3 esadd  P, diff1_1-3 ; add the x, y and z components  
 4 mfp.x  sum    ; retrieve the result from the P reg 
 5 sub.xyz   diff1_4-6, codebook1_4-6, input4-6 
 6 esadd  P, diff1_1-3 
 7 mfp.y  sum 
 8 sub.xy   diff1_7-8, codebook1_7-8, input7-8  
 9 esadd  P, diff1_7-8 
10 mfp.z  sum 
11 esum  sum 
12 mfp.x  sum 
13 esqrt  P, sum 
14 mfp.x  result 
 
Listing 1:  Calculation of the Euclidean distance between an input vector and a codebook vector. 
 
Some variants of the SOM e.g. [4] have used a matrix-vector product instead of the distance measure, 
and this can take fuller advantage of the parallel features of the VU, using all four FMACs 
simultaneously. The code below uses three VU instructions for parallel computations: “mula”, 
“madda” and “madd”. Each of these instructions takes three operands, the first one being the location 
to store the result, the other two are the inputs to the operation. The “mula” instruction multiplies the 
corresponding fields of the two inputs together, and stores the result in the 128-bit accumulator 
register. The “madda” instruction does the same product, and adds it to the value already held in the 
accumulator, storing the result in the accumulator. Finally, “madd” does the same as “madda”, except 
the result is stored in a floating point register. Following each instruction, the fields that should be 
used in the parallel calculation are specified (e.g. xyzw). The code below shows an example of a 6-D 
vector multiplied by a 6x5 matrix. The input vector is supplied in two registers: fields x,y,z and w of 
the register labelled “input1-4”, and fields x and y of “input5-6.” Each matrix column is held in 
fields x, y, z and w of registers labelled colx_1-4, and field x of colx_5. The 5-D result is held in 
registers with labels output_1-4 and output_5.  
 
 mula.xyzw  acc, col1_1-4, input1-4.x 
 madda.xyxw acc, col2_1-4, input1-4.y 
 madda.xyzw acc, col3_1-4, input1-4.z 
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 madda.xyzw acc, col4_1-4, input1-4.w 
 madda.xyzw acc, col5_1-4, input5-6.x 
 madd.xyzw output_1-4, col6_1-4, input1-6.y 
 mula.x  acc, col1_5, input1-4.x 
 madda.x acc, col2_5, input1-4.y 
 madda.x acc, col3_5, input1-4.z 
 madda.x acc, col4_5, input1-4.w 
 madda.x acc, col5_5, input5-6.x 
 madd.x output_5, col6_5, input1-6.y 
 
Listing 2:  Calculation of a matrix-vector product. 
 
It is also possible to distribute the processing of a matrix-vector product across both vector units using 
standard parallel algorithms for dense matrices, which are fully described in [5]. This is something that 
is likely to be more readily exploitable with Sony’s next generation console, which is expected to 
provide 32 separate vector processors. 
 
3.2    Distance and Neighbourhood Functions  
 
The commonly used difference of Gaussian distance function can be quickly calculated on VU1 using 
the EFU, although this facility is not provided on VU0. The “eexp” EFU instruction places the value 
of ze− in to the P register, where z is the data passed in. Unfortunately, this instruction has a high 
latency of 54 clock cycles for the instruction to complete, although other operating that do not use the 
EFU can be performed whilst the result is being generated. Therefore, while the calculation is being 
performed, the VU processor should be used to perform another useful task, such as calculating the 
product-sum for other nodes. Another approach is to stream the data between the two vector units. In 
this strategy, the competition is performed by calculating the distances using the method described in 
section 3.1, selecting the winner, then passing the results to VU1 which then performs the weight 
updates using the EFU for the neighbourhood function. At the same time, VU0 can be finding the 
winning node for the next input vector. A minor drawback to this is that the winner selection for the 
second input pattern will not be taking into account the changes made to the codebook vectors in 
response to the first codebook. However, since the codebook holds similar values from one training 
iteration to a subsequent one, this has a negligible effect on training. 
 
4 Caching of codebook vectors 
 
The memory provided in the vector units for data is 4k and 16k for VPU0 and VPU1 respectively. For 
many applications, this is very restrictive. If each weight parameter is a single precision floating point 
value, then VPU1 can store only 4096 parameters. Moreover, this does not take into account any 
storage space for input vectors and intermediate data. An effective solution to this problem stems from 
an optimization that was proposed in [8] and has been used in implementations of very large SOMs 
such as in [9]. The optimization that we propose using is to confine the winner search to within a small 
neighbourhood of the previous winner. This is acceptable only if we assume that subsequent vectors 
that are presented to the network are similar, which is the case for many sources of data. In computer 
game AI, this condition can often be assumed, since the state of a game is similar between successive 
frames, as was the case in a previous study [10], which applied the SOM to the game of “Pong”.  
 
The size of the neighbourhood within which the winner is searched can simply be determined by the 
amount of VU data memory available. The SOM can be held in main RAM, and a moving window is 
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imposed on the neighbourhood of the current winner. This window is uploaded to VU Memory, and is 
searched for the new winner. If the new winner is a different node, then the window is moved along. 
The codebook vectors that are no longer within the window can be discarded, or if they have been 
changed, they are transferred back to main RAM. Any codebook vectors that are in the neighbourhood 
of the new winner, but not the old winner can be uploaded to VU Memory, replacing the vectors that 
left the neighbourhood.  
 
As introduced in section 2, one of the features of the emotion engine that gives it such high throughput 
of data is the direct memory access controller (DMAC). When used with VPU1, the DMAC can 
perform data transfers to VU Memory in parallel with execution of micro-programs, even though they 
both access the same unit of memory. This is made possible using the technique of double-buffering, 
which allows data to be DMA transferred to and from one half (upper or lower) of VU memory, whilst 
the VPU processes data in the other half. This means that the process of swapping codebook vectors 
that move in and out of the neighbourhood of the winner can be done without halting the progress of 
training. Double-buffering is also useful for transferring input patterns to the vector unit, and input 
patterns may be uploaded in “episodes” of several at a time. 
 
3   Conclusions 
 
In this paper, we have given a brief overview of the hardware features of the Sony PlayStation 2, and 
we have shown how the SOM can be optimized for the specialist processors available. The 
optimizations include parallelized computation of Euclidean distances between vectors, matrix-vector 
products, hardware-accelerated calculation of non-linear distance functions and streaming operation 
between the two vector operation processors. These exploitations will make the SOM a more attractive 
AI method for use in computer games where processing resources are scarce, in which optimized 
processing is often essential. Previous studies (e.g. [10]) have shown the SOM to be a useful method 
for game AI due to its simplicity, its relatively low computational cost, and also its effectiveness in 
online learning; however, game developers have not adopted the SOM to any significant degree. This 
work has shown how its processing overhead may be further reduced, making the SOM a more viable 
option for computer games on the PS2. 
 
As yet, there is little officially known about the next generation of games consoles, although Sony 
have announced that “The Cell” processor will be used in their forthcoming console. Like the Emotion 
Engine, this processor also offers independent vector processors: eight in total, each of which have 
128k of local RAM, and are interconnected by a DMA controller. The vector processors can also be 
chained to allow fast streaming of data between a series of units. The optimizations presented in this 
paper are therefore relevant to the new hardware, which follows on from the success of the emotion 
engine in using vector processors and high-speed DMA. Future research in this area will focus on 
tailoring the methods presented for the new processing hardware. 
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