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Abstract –We propose a practical method to quantify the similarity between time series through 
its delay vector distribution. The method uses the Self-organizing map (SOM) to represent the time 
series in phase space and to build an histogram of the winner’s processing elements from a known 
time series segment (that works as a template). The Kulback-Leibler (KL) divergence or the 
Correlation Coefficient (CC) of the transition matrix of winners is applied to estimate the similarity 
of the template with the one constructed on line from other window segments of the time series. The 
method performs at the same level as Diks’ test, but it is computationally much simpler and can be 
run on line. 
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1   Introduction 
 
Research in time series analysis has been employing the linear generation model for many 
years. Nonlinear dynamic theory has recently been introduced into time series analysis and 
lifted some of the difficulties faced by linear theory. In nonlinear dynamic theory the first step 
is to reconstruct the underlying multivariate dynamical system from the observed one-
dimensional time series using Takens’ embedding theorem [1] or alternative embedding 
methods [2]. Many researchers have documented phase space reconstruction either in the 
context of static geometry or state dynamical transitions.  
Once the attractor is properly reconstructed, different alternatives exist to further study the 
dynamics of the generating system: (a) global attractor properties can be quantified by the 
correlation integral Grassberger & Procaccia [3] and its extensions Albano, Rapp and 
Passamante [4], Schreiber and Schmitz [5], and Kantz [6], or by Lyapunov exponents as 
proposed by Wolf et al.[7]; (b) nonlinear models can be estimated using dynamical neural 
network models8. Alternatively, one may be interested in quantifying similarity among 
attractors by estimating the delay vector density distribution as proposed by Wright and Schult 
[9], Wright [10], or Diks et al [11]. The method presented in this paper falls in this class of 
problems. 
The Diks test detects differences between delay vectors distributions. It estimates the 
continuous delay vectors distributions using Parzen windowing with a Gaussian kernel and the 
difference between two sets of delay vectors distributions is then evaluated via a statistics 
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based on the estimated pdfs. The test can be easily adapted to quantify time series similarity. 
The major issue of Diks test is the prohibitive computation cost in high dimensions. The 
expense stems from the estimation of distances in probability spaces for continuous variables. 
There are efficient methods for density estimation overviewed in [12], the efficiency of which 
comes from discretization. The observation space is divided into non-overlapping hypercubes, 
and the discrete density distribution reduces to counting samples within each hypercube. Here 
we propose using the SOM to discretize the data distribution estimation process. The building 
blocks used in the proposed similarity quantification methodology are not new, however the 
way we propose to use them to evaluate similarity in time series is novel and very effective.  
The paper is composed of method description in section 2, simulation in section 3, and a short 
discussion in section 4. In the simulation section the method is tested on numerically generated 
data from the Mackey-Glass time series and it is compared with both Diks test (the continuous 
density estimation with higher computation cost) and the box counting method in [12]. 
 
2   Method 
 
The centerpiece of our methodology is the utilization of the self-organizing map (SOM) as an 
infrastructure to model the trajectories in phase space with the added advantage of 
discretization and neighborhood preservation. The SOM output space is a discrete projection 
preserving neighborhoods of the high dimensional phase space. Therefore different trajectories 
in reconstruction space will be mapped into a different set of winning processing elements 
(PEs). The idea is to represent each trajectory by the histogram of the winning PEs, which will 
provide a signature in a discrete and finite space with which other histograms created from 
other trajectories can be compared against in a metric sense. We propose to utilize the 
Kullback-Leibler divergence to estimate the distance between the two histograms, with the 
added advantage that they always exist in the low dimensional output space of the SOM and 
the estimation can use discrete probabilities due to the discretization operated by the SOM. 
Alternatively, one can compare the transition matrices of the winning PEs for each trajectory 
using a metric resembling the correlation coefficient since the SOM preserves neighborhood 
relations. These operations will be explained next. 
 
2.1   SOM template building 
 
In this paper the SOM training algorithm used is taken from [13]. The stopping criterion is a 
preset value of the gradient of mean square error (MSE) between training samples and winning 
PEs weights from epoch to epoch. When the average gradient reached 0.001 in the past 100 
epochs, the training stopped. 
To train the SOM for a given scalar time series x(i), for i = 1, 2, …, M, where i is the time 
index, assume it is generated by a D dimensional dynamical system. From Takens’ embedding 
theorem1, the corresponding m-dimensional phase space ( 12 +≥ Dm ) can be constructed from 
the time series Xk = [x(k), x(k+L), x(k+2L), …, x(k+(m-1)L)]T, where L is the time delay. The 
delay vector sequence Xk {k = 1,2,…, K, and K = M-(m-1)L} constitutes a trajectory in phase 
space. This phase space is mapped onto a two dimensional SOM represented by N (N<< K) PEs 
each with weight Wj=[wj1, wj2, …wjm]T, j =1,2,…N . 
Given a trained SOM, let us create a template corresponding to a segment of the time series. 
Calculate the winner sample distribution Q over the SOM as the ratio between the numbers of 
times the jth PE is fired divided by the number of training samples. Calculate the transitions 
distribution between ith and jth PEs, Yij as the ratio of the sample transitions from ith PE to jth PE 
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divided by the total number of transitions (K-1). Either the SOM histogram Q or the transition 
matrix Y extracts a template for the known segment of the time series. Figure 1 shows the 
procedure to create these quantities diagrammatically. Figure 2 is an example of a 2D SOM 
trained with 2000 training samples of the Lorenz system (x variable, embedding dimension 3, 
delay 2). The template has 100 PEs. Figure 2 (a) plots in 2D space the winning PEs’ for the 
first 500 training samples, while (b) shows the histogram of the PE winners also in 2D space. 
This histogram represents in the 2D space a projection of the density of points in the trajectory 
in the original phase space. Notice that it is discretized through the SOM, which simplifies the 
distance calculation latter, but also introduces a quantization error.  
 
2.2   Similarity measure 
 
After the template for the segment is constructed the goal is to find similar segments in the 
remaining portion of the time series. Two similarity measures are considered: the Kullback-
Leibler divergence measuring the delay vector distribution similarity; and the Correlation 
Coefficient measuring a first order dynamic transition similarity. 
The phase space of a window of the test data is created using the same embedding parameters 
of the training samples, and a histogram P of the wining PEs over the SOM is created. The 
similarity between the template and the test window histogram is computed as: 
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Where N is the number of PEs in the SOM template, Q is the 2D histogram of the template and 
P is the 2D histogram of the test window histogram. 
As for the distance between transitions distributions, we define it as: 
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Where N is the number of PEs in the SOM template, Y is the transition matrix of the template, 
and Z is the transition matrix of the test window, built in the same way as for the template. 
Effectively this distance is the correlation coefficient between the norms of the two transition 
matrices. It is based on the Cauchy-Schwartz distance presented in [14] but without the log 
operation. Notice that if the first order transitions are exactly the same between the template 
and the test segment transition matrix, then CC=1; conversely, if the two have no similarity at 
all then CC=0, so it is intuitive to name this quantity as ‘correlation coefficient’. Note however 
that CC(Z,Y) is always positive. 
 
3   Simulation 
 
Known time series were created from the Mackey Glass and Lorenz models using the Runge-
Kutta method with integration step 0.01, sampling rate 6. First 60,000 samples of Mackey 
Glass (MG) series with τ=30, initial values 0.9 was generated. The embedding parameters were 
decided using the method introduced in [15], which yields an embedding dimension of m=6, 
delay L=2. The first 5,000 samples of this time series were used to train a MG30 SOM 
template (the SOM is two dimensional with 20 by 20 PEs. this training section is also used as 
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the reference section of box method and Diks test). The rest of MG30 was concatenated in the 
middle of other Mackey Glass series with different τ =17, 25, 27, 28, as well as with a Lorenz 
series x variable with σ=10 (x variable), r=28 (y variable), b=8/3 (z variable), initial conditions 
x(0)=1, y(0)=0, z(0)=0. All time series are normalized to the range [-0.5 0.5] before template 
training and mixing. So the testing sets are Lorenz(x)-MG30-Lorenz(x), MG17-MG30-MG17, 
MG25-MG30-MG25, MG27-MG30-MG27, MG28-MG30-MG28. 
 

 
 
Figure 3 (a) is the Kullback-Leibler distance generated by the proposed method, figure 3 (b) is 
the Diks’ distance between the same test series and the MG30 template time series, figure 3 (c) 
is the distance generated by box method. Notice that the numerical distance is insignificant for 
Diks method, as it depends on the window size of test.  
The significance of our results is contained in the drop observed when the MG30 is 
encountered. The SOM template method provides better quantification of the differences than 
the box method, which is very selective but it is unable to quantify well similarity. Indeed, the 
box method drops clearly when MG 30 pattern is found, but provides a weak discrimination of 
the differences in patterns close to MG 30 (i.e. the sensitive of box methods is reduced). Note 
that in this respect the SOM template method behaves very much like Diks test. However, the 
SOM based method looses some sensitivity for MG 29 which is also consistent with the 
unavoidable quantization error. Figure 4 depicts the corresponding first order dynamic 
similarity of the same test data generated by SOM method. As we can see the results are also 
very similar for this case and seem not to provide any extra advantage.
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(b) 0 2/13 2/13 
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Figure1.The density distribution Qj and transition 
distribution Yij of a trained template 
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4   Summary 
  
In this paper we proposed a method to quantify similarity between known time series patterns 
and time series under testing. The conditions to make the clustering of time series meaningful 
as had been discussed in [16][17] are taken care of by the embedding process before similarity 
testing. In stead of using sliding windows, the embedding is based on the assumption that the 
time series under study was generated by a nonlinear dynamic system. Armed with this 
assumption the embedding dimension and delay was carefully chosen through established 
procedures as described in [15] [18].  
In essence the proposed method is to measure similarity among trajectories of the time series. 
But instead of doing this in the original reconstruction space or on the time series, we propose 
to use a SOM to project and discretize the trajectory to a 2 D space. Two distance measures are 
proposed and compared: the KL divergence (not limited to KL, any divergence measure based 
on density distribution will do) which is a static measure of the density of points, and the 
correlation coefficient measure that is also sensitive to the time evolution of the trajectory.  
We compared the performance of this approach with Diks’ distance and the simple box 
counting method in synthetic time series. The conclusion is that the proposed SOM method 
performs at the same level as the Diks’ test. Therefore, when a time series pattern is known, 
then the SOM based method can be used to find similar time series segments that might be 
buried in the test data. The price paid for the proposed method is the training of a SOM 
template, and the gain is a computation cost on the order of the box counting density 
estimation methods, but with a much better performance. The SOM template method is 
therefore a clear winner in the compromise between performance and computational cost.  
 
Acknowledgements: This work was partially supported by NIH R01 EB002089. 

Figure 2 The first two dimension of Lorenz (x) SOM template 
(a).Voronoi cell center Wjs and training samples 
(b).Sample distribution Qjs  in each corresponding Voronoi cell 
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Figure 3 Divergences between MG30 template and the artificial mixed time series 
(a). Kullback-Leibler criteria via SOM template method 
(b). Diks distance 
(c). Distribution distance via box discretization method 
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