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Abstract – The use of advanced modelling methods in ecology expands as ecological data 
accumulate and increase in complexity. Artificial neural networks and in particular Self-
Organizing Map (SOM) have become very popular for analysing particular kinds of ecological 
datasets. Using the dataset of the distribution of freshwater fish species in France, this paper 
shows the potential of SOM in ecological modelling and more precisely for patterning French fish 
assemblages. This paper show also how SOM results can be used by end-users as tool for 
ecosystems managers by their implementation in a software. 
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1   Introduction 
 
In ecology, the amount and complexity of data increase. Powerful methods are then required for 
their analysis. For many years, classical statistical methods have been used to analyse ecological 
data, for example, the multiple linear regression [1], the canonical correspondence analysis [2] or 
the multiple dimensional scaling [3]. 
Alternative methods have then been developed which are better adapted to complex data. They are 
increasingly being applied in ecological research, for example, the genetic algorithm [4], the 
classification and regression trees [5] or the artificial neural network (ANN) [6, 7, 8].  
The multi-layered feed-forward neural network, trained with a back propagation algorithm [9] is 
the most common artificial neural network method used in ecology [10, 11, 12]. However, the Self-
Organizing Map (SOM) [13] method becomes very popular for analysing particular kinds of 
ecological dataset. The SOM is an efficient method for analysing systems ruled by complex non-
linear relationships and provides an alternative to traditional statistical methods to classify 
ecological data [14]. SOM have been used successfully in ecology for instance, for patterning 
communities [15], for the assessment of water quality [16], for the classification of rainfall 
variability [17] or for the modelling of population dynamics of aquatic insects [18].  
The SOM is often used to project the dataset in a non-linear way onto a topological rectangular grid 
arranged as a hexagonal lattice that is called a map. In addition to this visualisation, there is also an 
underlying SOM model whose outputs can de displayed in several different ways to reveals 
different types of information. 
In this paper, the potential of SOM in ecological modelling is illustrated with a dataset of the 
freshwater fish species distribution in France. The aim of this study was to patterning fish species 
distribution in French rivers and to evaluate the relative importance of several environmental 
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factors in influencing organization and structure of fish assemblages. Moreover, the results was 
used in a software suggesting a set of tool for water management and water policies in order to 
facilitate the assessment of ecological quality and perturbations of stream ecosystems. This 
software is usable by end-users as scientists and ecosystem managers. 
 
2   Material and Methods 
 
2.1   Data 
 
The data, extracted from the database held by the Conseil Supérieur de la Pêche (Banque 
Hydrobiologique et Piscicole), were previously analysed by [19, 20]. The dataset is constituted of 
668 reference sites (Fig.1) collecting during a period of 13 years of survey (1985-98). The selection 
of the reference sites was carried out by regional experts (fish biologists) on the basis of water 
quality map inspection and field reconnaissance. In the dataset, 40 species were identified (Table 
1). 

 
 

Figure 1 Map of France showing all sampling sites. 

Eight abiotic environmental variables were also measured at each site: slope (%), elevation (m), 
July mean daily maximum air temperature (°C; JulTemp), January mean daily maximum air 
temperature (°C; JanTemp), stream width (m), mean depth (m), distance from headwater source 
(km), and catchment area of the basin (km2). The slope and elevation were derived from 
topographic maps, and the distance from the source and the catchment area were measured using a 
digital palimeter on a 1:1,000,000-scale map. A detailed description of all these environmental 
variables is given in [19]. These variables are known to be the most consistent in structuring fish 
assemblages under natural conditions. 
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Abbreviations Common name Scientific name
ABB Bream Abramis brama
ALB Schneider Alburnoides bipunctatus
ALA Bleak Alburnus alburnus
ANA European eel Anguilla anguilla
BAB Barbel Barbus barbus
BAM Mediterranean barbell Barbus meridionalis
BLF Freshwater blenny Blennius fluviatilis
BLB Silver bream Blicca bjoerkna
CAA Goldfish Carassius auratus
CAC Crucian carp Carassius carassius
CHN Common nase Chondrostoma nasus
CHT Soiffe Chondrostoma toxostoma
COG Bullhead Cottus gobio
CYC Common carp Cyprinus carpio
ESL European pike Esox lucius
GAF Mosquitofish Gambusia affinis
GAC Threespined stickleback Gasterosteus aculeatus
GOG Gudgeon Gobio gobio
GYC Ruffe Gymnocephalus cernua
ICM Black bullhead Ictalurus melas
LAP Brook lamprey Lampetra planeri
LEG Pumpkinseed Lepomis gibbosus
LED Belica Leucaspius delineatus
LEC Chub Leuciscus cephalus
LEL Dace Leuciscus leuciscus
LES Varione Leuciscus souffia
LOL Burbot Lota lota
MIS Largemouth bass Micropterus salmoides
NEB Stone loach Nemacheilus barbatulus
PEF Perch Perca fluviatilis
PHP Minnow Phoxinus phoxinus
PUP Ninespined stickleback Pungitius pungitius
RHS Bitterling Rhodeus sericeus
RUR Roach Rutilus rutilus
SAS Atlantic salmon Salmo salar
SAT Brown trout Salmo trutta fario
SCE Rudd Scardinius erythrophthalmus
STL Zander Stizostedion lucioperca
THT Grayling Thymallus thymallus
TIT Tench Tinca tinca  

Table 1. List of 40 species identified in dataset. 
 
To find the biogeographical distribution patterns of fish species in French rivers, the dataset was 
introduced to the SOM. The densities of species were scaled between 0 and 1 in the range of the 
minimum and maximum values within abundance of species, after a log-transformation process in 
order to reduce variations in densities.  
 
2.2.   SOM for ecological modelling 
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Ecological data are commonly constituted of a set of objects described by several descriptors. The 
object, as in our study, is sample sites and the descriptors is a set of species found in each site 
(abundance of species) or also a set of environmental variables characterizing the sites. One of the 
goals achieved by the application of SOM in ecology is the classification of the sample sites (the 
objects) in the SOM map (the output layer of the network) according to the similarities between the 
species (descriptors). 
The SOM is usually constituted of two layer (the input and the output), linked by weights 
associated to connection intensities. The output layer is also called the map. It is a two-dimensional 
network of neurons arranged on a hexagonal lattice. This map consists of N neurons (35=7×5 in 
this study) which usually constitute a 2D grid for better visualization. Before the learning process, 
weight vectors constituted of as much unit as input neuron (so as species in the data) are assigned 
randomly to each neuron of the output layer. The output neurons are considered as virtual units to 
represent typical patterns of the input dataset assigned to their units after the learning process. The 
training starts when an input vector is sent through the network. This input vector is one of the 
sample sites. Each neuron of the output layer computes the summed distance between the weight 
vectors and the input vector. Among all the output neurons, the best matching unit (BMU) which 
has the minimum distance between weight and input vectors becomes the winner. The weight 
vectors of the BMU and its neighbourhood units are then updated by the SOM learning rule. The 
sample site is assigned to the BMU. All the samples sites are then classified in the unit of the SOM 
map at the end of the training. 
A cluster analysis can be applied to the trained SOM to define several levels of groups of virtual 
units. In this study a hierarchical cluster analysis was used with Ward’s linkage method. 
The contribution of each species in the classification of the sites and in the cluster structures helps 
to define fish community assemblages. The value of each input variable calculated during the 
training process is displayed in each neuron on the trained SOM map on a grey scale. 
Finally, using the mean value of each environmental variable in each virtual unit of the SOM map 
following [21], it is possible to analyse the relationships between biological and environmental 
variables. These mean values assigned on the SOM map are visualised with a grey scale, and then 
are compared with maps of sampling sites as well as species maps. 
 
3   Results and Discussion 
 
3.1   Assemblage patterning 
 
The classification of our sampling sites and the patterning of the fish assemblages on the national 
scale were realised by training the SOM (Fig. 2a). Using a hierarchical clustering analysis with the 
Ward method after the learning process of the SOM, several clusters were found (Fig. 2b). The 
numbers in the dendrogram in Fig. 2b corresponds to the number of the units of the SOM map. The 
weight vector of each unit represents a typical assemblage composition of samples. Two major 
clusters (I, II) were divided into two subclusters (IA and IB, IIA and IIB). Six clusters appeared 
finally at the distance level of 0.8 (IA-IIBb). 



Patterning and Clustering Ecological Community Assemblages 

b)

0 1 2 3 40 1 2 3 4
Euclidean distances

1
2

3
5

6
7

8
9

10
11

12

13
14

15
16

17

18
19
20
21

22
23

24

25
26

27
28

29
30
31

32

33
34

35

II

I

IIB

IIA

IB

IA

IIBb

IIBaIIA2

IIA1 IBb

IBaIA2

IA1

1

2

3

4

5

6

7

9

10

11

12

13

14

8

16

17

18

19

20

21

15

23

24

25

26

27

28

22

30

31

32

33

34

35

29

a)

IIA IIBb

IIBa

IBb

IBa IA

1

2

3

4

5

6

7

9

10

11

12

13

14

8

16

17

18

19

20

21

15

23

24

25

26

27

28

22

30

31

32

33

34

35

29

a)

IIA IIBb

IIBa

IBb

IBa IA

 

Figure 2 Classification of fish assemblages on the SOM map (a) and hierarchical classification of SOM units 
using Ward’s algorithm (b). Each unit of the map represents a typical assemblage composition of samples by 
taking its weight vector. 

Figure 3 displays the distribution of each fish species in each neuron of the SOM map in a grey 
scale, by visualizing the weight vectors of the SOM. For convenience of interpretation, the values 
of weights were rescaled between 0 (lighter colour) and 1 (darker colour). In Fig. 3, different map 
are obtained according to the species studied showing different distribution patterns. For instance, 
the species Salmo trutta fario (SAT) and Thymallus thymallus (THT) were the most abundant in 
the upper right areas of the map (cluster IA). Cottus gobio (COG), Lampetra planeri (LAP) and 
Salmo salar (SAS) are in the upper left areas (cluster IBa). Nemacheilus barbatulus (NEB), 
Phoxinus phoxinus (PHP) and Pungitius pungitius (PUP) were in the left areas (cluster IBb). 10 
species including Alburnoides bipunctatus (ALB), Esox lucius (ESL), and Leucaspius delineatus 
(LED) were in the lower left areas (cluster IIA). Barbus meridionalis (BAM), Blennius fluviatilis 
(BLF), Leuciscus souffia (LES), and Lota lota (LOL) were in the middle right areas (cluster IIBa) 
and 16 species including Blicca bjoerkna (BLB) and Perca fluviatilis (PEF) were in the lower right 
areas (cluster IIBb). Based on these distribution maps, we could find the species distribution 
patterns at different sampling sites. 
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Figure 3 Visualization of relative abundance of species calculated in the trained SOM in grey scale. The 
values were calculated during the learning process. Dark represents high values of abundance, whereas light 
is for low values. The acronyms of the species are presented in Table 1. 
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To understand the relationships of the environmental variables with the fish assemblages but also 
with the classification of sampling sites in the SOM, mean values of each environmental variable 
were calculated and visualized in the trained SOM map (Fig. 4). High values of each variable are 
represented by dark colours, whereas light colours are used for low values. Environmental 
variables showed a clear gradient distribution on the SOM map. The catchment area, the distance 
from the source, the width and the depth of the sampling areas were the highest values in the lower 
right areas of the SOM map (cluster IIBb), whereas lower values appeared in the upper areas 
(cluster IA). In contrast, the slope and the altitude were the highest in upper left area of the SOM 
map (cluster IA), while lower values were in the lower right areas (cluster IIBb). Meanwhile, 
temperatures in January and July were higher in the middle right areas of the map, although the 
distribution gradients were not clear. 

Catchment DSource Width Slope

Altitude Depth JulTemp JanTemp

CatchmentCatchment DSourceDSource WidthWidth SlopeSlope

AltitudeAltitude DepthDepth JulTempJulTemp JanTempJanTemp

 
Figure 4 Visualization of environmental variables on the SOM map trained with fish assemblages. The mean 
value of each variable was calculated in each output unit of the trained SOM. Dark represents a high value, 
while light is low. Catchment; catchment area, DSource; distance from source, JulTemp; maximum 
temperature in July, and JanTemp; maximum temperature in January. 

 
Overall the SOM showed six clusters of fish assemblages, highly related to longitudinal river 
gradient. These characteristics support the fish zonation theory in European continental river [22]. 
Recently [19] developed a probabilistic model characterizing fish assemblages of French rivers 
with environmental variables. They showed that the probability of occurrence is highly dependent 
on the longitudinal gradient. Our findings on the occurrence patterns for most species agree with 
their results, although there are some small differences for a few species. The results showed also a 
significant relationship between the trophic structure of the assemblages and river size such as 
catchment area, width, depth, and distance from head water source, supporting the river continuum 
concept [23]. 
 
3.2   End-user tool 
 
These results have been directly used in a software created for an European project, PAEQANN 
(“Predicting Aquatic Ecosystem Quality using Artificial Neural Network”; N° EVK1-CT1999-
00026) which had for goal to develop general methodologies, based on advanced modelling 
techniques, for predicting structure and diversity of key aquatic communities under natural and 
man-made disturbances. The software had the objective to suggest a set of tools for water 
management and water policies in order to facilitate the assessment of ecological quality and 
perturbations of streams ecosystems. This tool allow also scientists and ecosystem managers to 
consult the occurrence patterns of organisms in stream based on the database used in the tool, 
visualise the results of patterning and predicting models with existing data, and provide the 
possibility of testing the new data based on models developed with existing data. 
SOM was used in this tool as an ordination method to summarize the variability of the data. Thus 
sampling sites could be arranged on the reduced dimensions, so that these arrangements optically 
summarize the spatial variability of their biological and environmental features. 



Patterning and Clustering Ecological Community Assemblages 

Fig. 5 is the result frame displayed when the user has selected the ordination button for the French 
fish communities. The correspondence between the sampling sites represented on the geographic 
map and the cluster they belong to, according to the colour on the SOM map, can be seen. Several 
level of cluster can be observed. Moreover, the environmental variables can also be visualized on 
the SOM map. 
 

 
Figure 5 Example of an ordination window indicating fish communities in France 
 
Finally, the user can test new community data with trained SOM by presenting corresponding 
values. The tested results are then indicated on the corresponding unit of the SOM map with a 
black circle. This tool can be downloaded at http://aquaeco.ups-tlse.fr. 
 
4   Conclusion 
 
The national fish distribution characteristics were efficiently visualized on reduced dimensions 
through the SOM. The results confirm major concepts in fish ecology such as the river continuum 
concept. SOM seem to be a powerful analytical tool for identifying habitat and species grouping. 
Moreover, the implementation of the SOM result in a tool for ecosystem manager is very 
encouraging for the future use of SOM in ecology. 
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