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Abstract - The SOM algorithm was introduced to create abstract-feature maps. It is not
correct to use it as a model of pointwise neural projections such as the somatotopic maps or
the maps of the visual field, because the SOM does not transfer signal patterns: the winner-
take-all function at its output only defines a single response. This presentation introduces a
new self-organizing system model related to the SOM that has a linear transfer function for
patterns all the time. Starting from a randomly interconnected pair of neural layers, it creates
a pointwise ordered mapping from the input layer to the output layer.
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1 Introduction

There exist two main types of brain maps: 1. Pointwise ordered projections from a receptive
surface onto a cortical area (e.g. the visual and somatosensory maps). 2. Feature maps,
which are ordered along with some sensory feature value (e.g. color) or a computed entity
(such as the spatial location or orientation of the subject or an object). The self-organizing
map (SOM) paradigm [1] was originally only meant to explain the Type 2 (abstract feature)
maps. All previous attempts to construct Type 1 (pointwise projective) maps artificially
have been either defective or erroneous. The scope of this talk is to discuss the possibility
of creating Type 1 (pointwise projective) maps in a new self-organized fashion related to the
SOM.

The SOM was not the first model of cortical organization (cf., e.g., the line detector model
of v.d. Malsburg of 1973 [2] and the "nerve field” model of Amari of 1980 for the Type 1
pointwise maps [3]). Unfortunately, none of these attempts was a success. The main weakness
of the earlier models was that they were based solely on excitatory and inhibitory lateral
connections, and the Hebbian rule of synaptic plasticity of the afferent connections. For
instance, the model of v.d. Malsburg was ”brittle,” because the reported patchwise ordering
ensued when using fixed lateral connectivity values, some of which were defined with the
accuracy of two or three decimals, and no attempts have later been made to improve or
generalize the model. In the nerve-field type models, on the other hand, a genetically defined
preordering of the connectivity had to be assumed; this order was then shown to be stable.
However, when starting with the disordered initial state, no global ordering was ever obtained;
only a weak tendency of patchwise ordering has been observed.
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My original, biologically inspired solution to create globally ordered abstract-feature maps,
starting from a disordered state, was to assume two different kinds of state variables: 1. By
means of very-short-range lateral excitatory connections and somewhat-longer-range lateral
inhibitory connections, a winner-take-all (WTA) function can be implemented, which con-
centrates the neural activity onto a small spot. 2. A separate effect spreads some kind of
plasticity control to the spatial neighborhood of the winner. The essence of these two separate
functions, viz. the WTA and the neighborhood function, respectively, was dressed into the
mathematical SOM algorithm, which no longer refers to any specific biological components.
Some people, however, have tried to implement the pointwise projective (Type 1) ordered
maps, e.g., the somatosensory or visual maps, by means of the SOM algorithm, too, using
the coordinates of the receptive surface as a two-dimensional input to the SOM array. This
is totally wrong, first, because the sensory systems have no means to decode and transfer
the coordinate values of a stimulus to the brain, second, because the input coordinates cor-
respond to the stimulation of only one point in the input layer, and third, because the WTA
only defines a single output response. Contrary to that, many brain maps produce plenty of
concurrent output responses to a multimodal stimulus pattern.

In the biological realms, genetic information defines a very rough initial order of the neural
projections. Refinement of this order begins already prenatally, by means of endogenous
signals generated by the network itself. The final resolution of the mapping, and optimiza-
tion of the neural resources (magnification factor) are achieved postnatally, according to the
sensory experiences. It has been demonstrated by Chang and Merzenich [4] that exposing
newborn rats to continuous moderate-level acoustic noise, the development and refinement
of the tonotopic maps will be delayed long beyond normal periods. Nakahara et al. [5] have
showed that the exposure of infant rats to complex tone sequences results in altered auditory
cortex organization. These observations, among many others, prove that the input-driven or-
ganization of the brain maps is a fact and needs a new theoretical model. I shall demonstrate
the formation of such a mapping, starting with random interconnectivity.

2 A new model for a pointwise projective self-organizing map

The objective of this presentation is to demonstrate the self-organized formation of a pointwise
mapping. Without essentially losing in generality, in order to reduce the computing load, and
to facilitate a simple graphic display, the input and output ”layers” in this experiment are
defined as one dimensional. The first choice we have to made is to decide whether we start
from a completely disordered state, i.e., with randomly interconnected layers, or whether
we presume some grand initial order. The latter would correspond to the state from which
postnatal learning begins in biology, but restricting ourselves to such a postulated order would
make the problem so easy that the simulation results would seem almost trivial. To keep the
theory sufficiently general, we assume only a single process model, which, nonetheless, may
undergo different phases for different input data. Let us start with random initial connections.
We shall try to use multimodal signals all the time, in order to mimic real stimulus patterns. (I
use the term "mode” in the same sense as in statistics, meaning a ”peak” or local maximum.
Such a "mode” may be due to a localized component function.)

All the units of the input layer are initially connected to all of the output units by random
weights. As we want to use this network for signal transfer, its transfer function is assumed
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as linear at all times:

n
yi= Y wiz; (1)
=1

where x; is the activity at synapse j of neuron i, in these experiments n = 50, and w;; is the
variable strength of synapse j of neuron 1.

In a somewhat similar sense as in the ”biological” SOM algorithm, a spatially distributed
plasticity-control agent is assumed. In this model, the local concentration z; of the agent at
unit ¢ is assumed to be describable by the convolution of the activities y; at the units h and
some point-spread kernel gj,_; that describes the spreading of the agent or its effect from
location h to location i:

n+o
z = Z Ih—iYn - (2)
h=1-¢§

The values of the y vector have thereupon been extended by § positions to the left and right
beyond the borders of the output layer in order to allow the point-spread kernel to work
reasonably well at the borders, too.
The concentration of the plasticity-control agent z;, on the other hand, shall control the
modifiabilities of the connections in a nonlinear, progressive fashion. Let u; be the plasticity-
control effect at location i:

u; = f(2) , (3)

where f is a positive, monotonically increasing function to be defined later on.
Conventionally, the signal-dependent modifications of the synaptic efficacies have been as-
sumed to obey the law of Hebb: the changes are proportional to the product of input and
output activities. However, if the self-ordering connections must learn from multimodal input
signals, where the number and locations of the modes are variable, I have found it necessary
that the changes shall be proportional not only to the presynaptic activities but also to some
function of the synaptic strengths themselves. The need for such an extra condition may not
be quite obvious and cannot be demonstrated here in detail. Let it suffice to mention that
when a multimodal input signal pattern matches with a synaptic weight pattern, the degree
of matching is mainly due to the coincidence of one of the activity modes with the strongest
synapses. Learning should then be restricted locally to the neighborhood of these strongest
synapses, e.g., by making the learning proportional to the synaptic strength, or otherwise the
activated neurons try to learn the ”irrelevant” signal modes present at their inputs, too. In
this way, different neurons can simultaneously learn from different modes.

On the other hand, the postsynaptic activity in the law of Hebb is now replaced by the com-
bined effect of the neighboring neurons. Let w;;(t) be the strength of the synaptic connection
from input unit j to output neuron ¢ at time ¢. Then the adaptation or updating equations
of the interconnection strengths are assumed to read in the discrete-time formalism as

wij(t + 1) = wiz(t) + a(®)[1 + Buwi; (t)]ui(t)z; () , (4)

where «(t) is a time-variable parameter that describes the synaptic plasticity, and [ is a
constant.
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Eq. (5) resembles the law of Hebb, with the exceptions that 1. the postsynaptic activity
is replaced by the local control effect u;(t) that depends on the postsynaptic activities of
the neighboring neurons, and 2. the rate of modification is further made to depend on the
efficacy of the connection wj; itself.

However, the law of Hebb and also eq.(4) as such would still be unrealistic in practice, because
they only describe the conditional strengthening of the synapses. This would sooner or later
lead to the saturation of the synapses. In reality, unused synapses regress. In this simulation,
to make the connections increase and decrease, the w;; are normalized by dividing each
w;j(t + 1) by the Euclidean norm of the set of the w;;(t + 1). Such a normalization was
already used in the original ”dot-product SOM” algorithm, and there it was assumed to have
a biological counterpart, e.g., in the redistribution of the synaptic resources within a cell.
There are still two functional forms to be defined for this system model, namely, the con-
volution kernel g;,_;, and the nonlinearity f of the effect of the plasticity-control agent. No
clues can be obtained from biological data, and there are indefinitely many choices for the
mathematical forms. I have tried many options with varying success. For the present re-
port we may rest content with the choices that look reasonable and have produced successful
orderings. Let us take for the convolution kernel a law that resembles the diffusion effect:

1

ST h—ije (5)

Gh—i
where c is a constant, similar to the diffusion length. For the nonlinear effect of the plasticity-
control agent we take

ui = f(z) = pos(e™ —b), (6)

where pos(z) is 1 if x > 1 and zero otherwise, and a and b are free parameters. Eventually b
can be taken equal to zero. (Notice that exponential laws often apply to chemical effects.)
Earlier the normalization of the updating equation (4) was discussed. The competitive-
learning processes are in general rather sensitive to the condition that the values to be
compared are presented in common scales. The neural systems have many means to nor-
malize the neural signals to common scales. Therefore, to maximize the ordering tendencies,
normalization was carried out in all of the following places: 1. The vector of the output
values y; was normalized with respect to its maximum element. 2. A similar normalization
was performed for the z;. 3. Moreover, the vector of the plasticity-control effects u; was
normalized with respect to the sum of its elements. The latter choice corresponds to locally
and temporally limited resources of the plasticity-control agent. After more careful studies,
it may be possible to simplify and combine some of these normalizations.

In the first place I want to show that the pointwise organization will result even when starting
with a randomly interconnected state, and using multimodal input patterns. This kind of
ordering would be impossible in the traditional SOM. Let the input pattern consist of K
Gaussian components, centered at random in the input layer:

K

T; = Ze_(i_dk)Q/ZsQ , (7)

k=1

where the dj, are picked up at random from [1,50].
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3 Simulations

3.1 Main result

The initial values for the w;; were selected at random from the range [0,1] with uniform
probability, after which, for each i, the sets of the input weights were normalized (using
the Euclidean norm). The initial connectivity matrix is shown in Fig. 1la, where row 1
corresponds to the ith output neuron, and column j to its jth synapse, or the jth input
neuron, respectively. In eq.(2), 6 = 3. The size of the small squares describes the value of
Wi -

The parameter 3 in eq.(4) was equal to 100. The point-spread parameter ¢ in eq.(5) was
equal to 10, and the parameters in eq.(6) were: a = 4, b = 12. In eq.(7), the displacements dy,
were selected from the range [1,50] with a uniform probability, the number K of the Gaussian
components was drawn at random from [1,3]. The only time-variable system parameter is
the learning-rate factor « like in the SOM, but additionally, the resolution of the input signal
patterns was made to improve with time. For these two functions I finally selected

s =s(t) = 2+ 10/(1 +.002¢) , 8)

a(t) = 1/(1 + .004¢) . 9)

The connectivity matrix after 25 000 training cycles is shown in Fig. 1b. Like in the SOM,
when using random processes for intialization and input signals, the direction of ordering will
result as the mirror image in half of the cases.

3.2 Refinement of initial order

If one starts with a rough initial order, the training pattern can be much more complex than
before. Fig. 1c delineates a roughly preordered initial state. It can be obtained, e.g., using
broad unimodal input patterns (soft Gaussians) as input and the value § = 0 in eq.(4). Fig.
1d gives the ordering result when the number K of the Gaussian components in the input
pattern was drawn at random from [1,10] using 50 000 training cycles.

3.3 Magnification factor

Like in the SOM, the area in the output layer occupied by a certain subset of input projections
can be shown to depend on the frequency of stimulation of this subset. I have carried out
numerous tests to evaluate the magnitude of this magnification factor, but the effect seems
to depend on the particular system parameters and the signal history.

3.4 Random input

A control check was performed by using as the elements of the input vectors random numbers
from the range [0,1]. The system model was otherwise the same as that defined in Secs. 2
and 3.1. Fig. le shows the connectivity matrix obtained after 50 000 training cycles.

Another control check was carried out starting with the roughly preordered initial state
depicted in Fig. 1c, and continuing the refinement process with random inputs for 50 000
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training cycles. The result is shown in Fig. 1f. One can discern a ”columnar” structure, but
no refinement of the initial ordering has taken place.

4 Biological conditions

The evidence for some kind of local control of the synaptic plasticity comes from many obser-
vations: theoretical, physiological, and behavioral. One might think that there exist plenty
of chemical signaling agents in the neural realms to that end. From the point of view of the
theories of self organization, however, at least the following two conditions must be met: 1.
The lateral spread of the agent or effect must have a proper range, at least several millimeters,
to comply with the sizes of the sensory maps. 2. The time constants of the agents or effects
must be sufficiently short, of the same order of magnitude as the typical changes in input
patterns, in order that the adaptation effects follow the signals.

The time constants of the neural growth factors are much too long in order that the latter
could act as local plasticity-control agents.

Some years ago it was believed that the synaptic plasticity is controlled by the NO (nitric
oxide) molecules, which are produced at the synaptic terminals in proportion to their activities
and diffused into the extracellular space. New estimates by Philippides et al. [6] as well as
Thomas et al. [7] indicate that the diffusion range of NO may be only on the order of 100
microns. This is too short a value to account for map formation.

The well-known plasticity-controlling neuromodulators like noradrenaline spread diffusely
across the cerebral cortex. However, it is thinkable that the local neural signals are somehow
able to affect the receptors of these neuromodulators, enhancing the plasticity-control effects
locally or restricting them to the neighborhoods of signal activities. This control effect might
also have a shorter time constant than that of the transmission of the neuromodulators
themselves. On the other hand, it is also imaginable that the plasticity-control effects are
mediated by anatomical structures such as the interneurons and their nonsynaptic control
actions.

An up-to-date account of the time-dependent plasticity is given in Ref. [8].

5 Conclusions

The original Self-Organizing Map (SOM) paradigm was inspired by a need to explain the
abstract-feature maps of the brain. Contrary to that, the pointwise projective maps such as
the visual and somatotopic maps should not be described by the SOM algorithm, first of all,
because the winner-take-all function only defines a single output response at a time.

This presentation introduces a new model in which the ordering of the pointwise projections
is driven by the input signals. No initial order needs to be assumed. It may be proper to call
it the POP (pointwise organizing projections). Unlike in the SOM algorithm, the learning
process does not rely on any global winner-take-all function. Especially at the later steps
of learning, the map can produce an indefinite number of separate, simultaneous output
responses, around each of which learning proceeds concurrently and is decoupled from the
learning processes that take place at the other locations. The signal transfer mapping is
linear at all times, and becomes finally a one-to-one spatial mapping over almost all of the
input and output layers, let alone some minor boundary effects.
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Figure 1: (a) Initialization (b) Main result, one to three modes (¢) Rough initial order (d) Refinement,
one to ten modes (e) Random input (f) Rough initial order followed by random input
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In biology, the ordered neural projections are roughly preprogrammed genetically, and prena-
tal endogenous signals are also at work in defining the neonatal order of the maps. Although
global ordering seems to be possible even when starting with a disordered initial state, some
results in this work indicate that if there exists even a slight degree of initial order, this
order will be improved markedly by the sensory experiences, and the refinement process then
tolerates more complex stimuli than when starting from a complete disorder.

References

[1] T. Kohonen (1982), Self-organized formation of topologically correct feature maps, Biol.
Cyb., vol.43, p.59-69.

[2] E.F. Chang, M.M. Merzenich (2003), Environmental noise retards auditory cortical de-
velopment, Science, vol.300, p.498-502.

[3] H. Nakahara, L.I. Zhang, M.M. Merzenich (2004), Specialization of primary auditory
cortex processing by sound exposure in the ”critical period,” PNAS, vol.101, p.7170-
7174.

[4] C. v.d. Malsburg (1973), Self-organization of orientation sensitive cells in the striate
cortex, Kybernetik, vol.14, p.85-100.

[5] S.-i. Amari (1980), Topographic organization of nerve fields, Bull. Math. Biol., vol.42,
p- 339-364.

[6] A. Philippides, P. Husbands, M. O’Shea (2000), Four-dimensional neuronal signaling by
nitric oxide: a computational analysis, J. Neurosc., vol.20(3), p.1199-1207.

[7] D.D. Thomas, X. Liu, S. Kantrow, J.R. Lancaster, Jr. (2001), The biological lifetime
of nitric oxide: implications for perivascular dynamics of NO and Os, PNAS, vol.98,
p-355-360.

[8] T.K. Hensch (2003), Controlling the critical period, Neurosc. Res., vol.47, p. 17-22.



