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Abstract - We extend neural gas for supervised fuzzy classification. In this way we are able
to learn crisp as well as fuzzy clustering, given labeled data. Based on the neural gas cost
function, we propose three different ways to incorporate the additional class information into
the learning algorithm. We demonstrate the effect on the location of the prototypes and the
classification accuracy. Further, we show that relevance learning can be easily included.
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1 Introduction

Clustering is an important data processing task relevant for pattern recognition, sequence
and image processing, data compression, etc. One appropriate tool is offered by prototype
based vector quantization including effective concrete algorithms such as the Self-Organizing
Map (SOM) and the Neural Gas network (NG) [6],[7]. These algorithms distribute the
prototypes in a way that the data density is estimated by minimizing some description error
aiming at unsupervised data clustering. Prototype based classification as a supervised vector
quantization scheme is dedicated to distribute prototypes in a manner that data classes can
be detected, which naturally is also influenced by the data density. Important approaches
are the family LVQ [6] and the recent developments like Generalized LVQ (GLVQ) [8] or
Supervised NG (SNG) [3]. Thereby, general parameterized distance measures can be applied
and their parameters may also may be subject of the optimization. This paradigm is called
relevance learning giving the respective algorithms GRLVQ and SRNG [4],[3].
One major assumption of these classification approaches is that both (training) data and
prototype assignments to classes have to be crisp, i.e. a unique assignment of the data to the
classes as well as for the prototypes is required. The latter restriction can be smoothed by
a subsequent post-labeling of the prototypes after learning according to their responsibility
to the training data yielding fuzzy assignments [9]. However, there do not exist supervised
prototype based approaches to work with fuzzy labels in data during training so far, although
they would be desirable. In real world applications for classification like in medicine, a clear
(crisp) classification of training data may be difficult or impossible: Assignments of a patient
to a certain disorder frequently can be done only in a probabilistic (fuzzy) manner. Hence,
it is of great interest to have a classifier which is able to manage this type data.
In this contribution we provide modifications of the usual NG for solving fuzzy classification
tasks. For this purpose we extend the cost function of the NG to incorporate the assessment of
the fuzzy label accuracy. We obtain new learning schemes for the prototypes and additionally
an adaptation rule for the update of the prototype fuzzy labels. We describe the effect of
the learning schemes on the prototype locations and classification. Further we are able to
integrate the relevance learning ideas into this approach.
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2 The neural gas network

Neural gas is an unsupervised prototype based vector quantization algorithm. It maps data
vectors v from a (possibly high-dimensional) data manifold D ⊆Rd onto a set A of neurons
i formally written as ΨD→A : D → A. Each neuron i is associated with a pointer wi ∈Rd

also called weight vector. All weight vectors establish the set W = {wi}i∈A. The mapping
description is a winner take all rule, i.e. a stimulus vector v ∈ D is mapped onto the neuron
s ∈ A the pointer ws of which is closest to the actually presented stimulus vector v (winner),

ΨD→A : v 7→ s (v) = argmin
i∈A

ξ (v,wi) . (1)

whereby ξ (v,w) is usually the Euclidean norm ξ (v,w) = kv−wk = (v−w)2. Here we
only suppose that it is a differentiable symmetric similarity measure.
During the adaptation process a sequence of data points v ∈ D is presented to the map with
respect to the data distribution P (D). Each time the currently most proximate neuron s
according to (1) is determined, and the pointer ws as well as all pointers wi of neurons in
the neighborhood of ws are shifted towards v, according to

4wi = −�hσ (v,W, i)
∂ξ (v,wi)

∂wi
. (2)

The property of “being in the neighborhood of ws” is captured by the neighborhood function

hσ (v,W, i) = exp

µ
−ki (v,W)

σ

¶
, (3)

with the rank function

ki (v,W) =
X
j

θ
¡
ξ (v,wi)− ξ

¡
v,wj

¢¢
(4)

counting the number of pointers wj for which the relation kv−wjk < kv −wik is valid [7].
θ (x) is the Heaviside-function. We remark that the neighborhood function is evaluated in
the input space. The adaptation rule for the weight vectors follows in average a potential
dynamic according to the potential function [7]:

ENG =
1

2C (σ)

X
j

Z
P (v)hσ (v,W, j) ξ

¡
v,wj

¢
dv (5)

with C (σ) being a constant. It will be dropped in the following. It was shown in many
applications that the NG shows a robust behavior together with a high precision of learning.

3 Fuzzy Labeled NG

We now switch from the unsupervised scheme to a supervised scenario, i.e. each data vector
is now accompanied by a label. According to the aim of the paper, the label is fuzzy: for
each class k we have the possibilistic assignment xk ∈ [0, 1] collected in the label vector
x =(x1, . . . , xNc). Nc is the number of possible classes. Further, we introduce fuzzy labels

for each prototype wj : yj=
³
yj1, . . . , y

j
Nc

´
. Now, we adapt the original unsupervised NG so

that it is able to learn the fuzzy labels of the prototypes according to a supervised learning
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scheme. Thereby, the behavior of the original NG should be integrated as much as possible
to transfer the excellent learning properties. We denote this new algorithm Fuzzy Labeled
Neural Gas (FL-NG). To include the fuzzy label accuracy into the cost function of FL-NG
we add a term to the usual NG cost function, which judges the deviations of the prototype
fuzzy labels from the fuzzy label of the data vectors:

EFL−NG = ENG + βEFL (6)

The factor β is a balance factor which could be under control or simply chosen as β = 1. For
precise definition of the new term E we have to differentiate between discrete and continuous
data, which becomes clear during the derivation. We begin with the discrete case.

3.1 FL-NG for discrete data

In the discrete case we have data vk with labels xk. We define the additional term of the
cost function as

EFL =
1

2

X
j

X
k

hσ

³
vk,W,j

´³
xk−yj

´2
(7)

To obtain the update rules for the weights and their labels, we take the derivative of EFL−NG

with respect to wi and yi. The latter one is simply obtained as

∂EFL−NG

∂yi
= −

X
k

hσ

³
vk,W,i

´³
xk−yi

´
(8)

which is a weighted average of all fuzzy labels of data.
For the weight vector update one takes the gradient ∂EFL−NG

∂wi
. The first term ∂ENG

∂wi
is known

from usual NG, eq. (2). Considering the second term EFL we get

∂EFL

∂wi
= − 1

2σ

X
j

X
k

∂kj
¡
vk,W

¢
∂wi

hσ

³
vk,W,j

´³
xk−yj

´2
(9)

We introduce
4 (v,wi,wl) = ξ (v,wi)− ξ (v,wl) (10)

and consider

∂kj
¡
vk,W

¢
∂wi

= δi,j ·
X
l

δ
³
4
³
vk,wj ,wl

´´ ∂ξ
¡
vk,wj

¢
∂wi

− δ
³
4
³
vk,wj ,wi

´´ ∂ξ
¡
vk,wi

¢
∂wi

(11)
with δ (x) being the Dirac-distribution and δi,j the Kronecker-symbol. So we obtain in (9)

∂EFL

∂wi
= − 1

2σ

X
k

ÃX
l

δ
³
4
³
vk,wi,wl

´´ ∂ξ
¡
vk,wi

¢
∂wi

!
hσ

³
vk,W,i

´³
xk−yi

´2
(12)

+
1

2σ

X
j

X
k

Ã
δ
³
4
³
vk,wj ,wi

´´ ∂ξ
¡
vk,wi

¢
∂wi

!
hσ

³
vk,W,j

´³
xk−yj

´2
(13)

which contributes only for vanishing 4-function, i.e. on the borders of the receptive fields
of the neurons. However, in case of discrete data the probability for this is zero. Thus, the
weight vector learning in the discrete scenario based on this cost function is (almost surely)
independent of the label adaptation.
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3.2 FL-NG for continuous data

In case of continuous data the above argument is not valid: We cannot ignore the borders
of the receptive fields. Therefore, it is impossible to treat the problem in the same way.
As the consequence we redefine the term EFL in (6) to avoid these difficulties. We denote
(continuous) data by v and its labels by x.

3.2.1 Gaussian kernel

As the first method, we weight the label error by a Gaussian kernel depending on the distance.
Hence, we choose the second term EFL as

EFL =
1

2

X
j

Z
P (v) gγ

¡
v,wj

¢ ¡
x− yj

¢2
dv (14)

where gγ
¡
v,wj

¢
is a Gaussian kernel describing a neighborhood range in the data space:

gγ
¡
v,wj

¢
= exp

Ã
−
ξ
¡
v,wj

¢
2γ2

!
(15)

Note that gγ
¡
v,wj

¢
depends on the prototype locations, such that EFL is influenced by

both w and y. Investigating this cost function, again, the first term ∂ENG
∂wi

of the full gradient
∂EFL−NG

∂wi
is known from usual NG. The new second term now contributes according to

∂EFL

∂wi
= − 1

4γ2

Z
P (v) gγ (v,wi)

∂ξ (v,wi)

∂wi
(x− yi)2 dv (16)

which takes the accuracy of fuzzy labeling into account for the weight update. Both terms
define the learning rule for the weights.
For the fuzzy label we simply obtain ∂EFL−NG

∂yi
= ∂EFL

∂yi
, where

∂EFL

∂yi
= −

Z
P (v) gγ (v,wi) (x− yi) dv (17)

which is, in fact, a weighted average of the data fuzzy labels of those data belonging to
the receptive field of the associated prototypes. However, in comparison to usual NG the
receptive fields are different because of the modified learning rule for the prototypes and
their resulting different locations. The resulting learning rule is

4yi = �lgγ (v,wi) (x− yi) (18)

3.2.2 Approximation of the rank function

As a second approach, we approximate the original neighborhood function hσ. In (4) we
replace the Heaviside function by a sigmoid function ζ (x) = 1

1+exp
³
− x
2τ2

´ and obtain an
approximation of the rank:

k̃j (v,W) =
X
l

ζ (4 (v,wj ,wl)) (19)



Fuzzy Labeled Neural Gas for Fuzzy Classification

using the 4-notation (10). Then the additional term of the cost function is defined as

ẼFL =
1

2

X
j

Z
P (v) h̃σ (v,W,j)

¡
x− yj

¢2
dv (20)

with h̃σ (v,W,j) = exp
³
− k̃i(v,W)

σ

´
. To obtain the update rules we take the derivative of

EFL−NG with respect to wi and yi. The latter one is simply obtained as

∂EFL−NG

∂yi
= −

Z
P (v) h̃σ (v,W,i) (x− yi) dv (21)

which is a weighted average of all fuzzy labels of the data.
For the weight vector update one takes the gradient ∂EFL−NG

∂wi
. The first term ∂ENG

∂wi
is known

from usual NG, eq. (2). Considering the second term ẼFL we get

∂ẼFL

∂wi
= − 1

2σ

X
j

Z
P (v)

∂k̃j (v,W)

∂wi
h̃σ (v,W,j)

¡
x− yj

¢2
dv (22)

We derive

∂k̃j (v,W)

∂wi
= δi,j ·

ÃX
l

ζ 0 (4 (v,wi,wl))
∂ξ
¡
v,wj

¢
∂wi

!
− ζ 0 (4 (v,wj ,wi))

∂ξ (v,wi)

∂wi
(23)

with ζ 0 (x) = 1
2τ2

ζ (x) (1− ζ (x)). So we obtain in (22)

∂ẼFL

∂wi
= − 1

2σ

Z
P (v)

ÃX
l

ζ 0 (4 (v,wi,wl))
∂ξ (v,wi)

∂wi

!
h̃σ (v,W,i) (x− yi)2 dv(24)

+
1

2σ

X
j

Z
P (v)

µ
ζ 0 (4 (v,wj ,wi))

∂ξ (v,wi)

∂wi

¶
h̃σ (v,W,j)

¡
x− yj

¢2
dv(25)

Hence, the full update becomes

4wi = −
Ã
�hσ (v,W,i)− �0

σ
h̃σ (v,W,i) (x− yi)2

X
l

ζ 0 (4 (v,wi,wl))

!
∂ξ (v,wi)

∂wi
(26)

−�
0

σ

∂ξ (v,wi)

∂wi

X
j

h̃σ (v,W,j) · ζ 0 (4 (v,wj ,wi)) ·
¡
x− yj

¢2 (27)

The respective label update rule is obtained in complete analogy to (18) as

4yi = �lh̃σ (v,W,i) (x− yi) (28)

4 Experiments and Applications

In the following we give preliminary experimental results. Thereby, we used the Euclidean
metric as distance measure ξλ (v,w) = kv −wk. First we apply the FL-NG to an artificial
data set of two overlapping Gaussian distributions. The classification results of the different
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NG (post) discr. FL-NG cont. FL-NG (exp.) cont. FL-NG (sigm.)
artificial data 90% 91% 92% 90%
Breast cancer 74% 74% 73% 80%

Table 1: Classification accuracy for the artificial data set (overlapping Gaussians) and the
Breast cancer data set obtained by the several approaches.

Figure 1: Distribution of data and prototypes for the Wisconsin Breast Cancer data set for NG with
post labeling (left) and (continuous) FL-NG using the sigmoid approximation; for the first two data
dimensions. ¡- data class 1; · - data class 2; B- prototypes with highest fuzzy label for class 1; C-
prototypes with highest fuzzy label for class 2.

FL-NG versions in comparison to an usual post-labeled NG using 40 prototypes are depicted
in Tab.1. As expected for this simple data set, the accuracy changes only slightly improved.
However, the distributions of the prototypes differ significantly: Thereby, the discrete variant
yields similar results compared to post labeled NG, which can be expected from the learning
rules, because the labels do not influence the prototype updates for the discrete version. Sim-
ilarly, the results of the two continuous variants do not differ much from each other, which is
due to the fact that the two data classes are unimodal. However, the continuous approaches
place more prototypes nearby the class border. Thus, the class labels clearly influence the
prototype location for these versions. This effect can be also observed in real world appli-
cations. As an exemplary application, we provide the FL-NG results with 20 prototypes for
the Wisconsin Breast Cancer Data set from [1], see Fig.1 and Tab.1 for classification accu-
racy. Interestingly, differences of the accuracy can clearly be observed for this data set. We
would like to mention that prototypes nearby the class border have balanced fuzzy labels
whereas prototypes in the center of the class regions have crisp label values, such that a
different classification security can be assigned to data points within the class centers and at
the borders of decision boundaries. Generally, it seems that the classification accuracy can
improved by FL-NG in comparison to post labeled NG. However, further parameter studies
and simulations are clearly necessary to give more significant results and explanations of the
numerical FL-NG properties.

5 Relevance Learning in FL-NG

In the theoretical derivation of the algorithm we have used a general distance measure, which
can, in principle, be chosen arbitrarily. Now we consider the case of a parametrized ξλ (wi,ws)
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distance measure with parameters λ =(λ1, . . . , λm). It has recently been demonstrated for
both, supervised and unsupervised prototype based learning that an adaptation of the metric
during training can greatly increase the accuracy without decreasing the usually excellent
generalization ability [3],[2],[5]. Because of the mathematical derivation of FL-NG by means
of a cost function, the principle of learning metrics can easily transferred to our approach.
Here we demonstrate this fact by deriving the learning rules for the metric parameters λ.
For this purpose we investigate the derivative

∂EFL−NG

∂λk
=

∂ENG

∂λk
+ β

∂EFL

∂λk
(29)

of the cost function. First we consider the continuous cases: The first term ∂ENG
∂λk

gives

∂ENG

∂λk
=

1

2C (σ)

Ã P
j

R
P (v)hσ (v,W,j)

∂ξλ (v,wj)
∂λk

dv

+
P

j

R
P (v) ξλ

¡
v,wj

¢ ∂hσ(v,W,j)
∂λk

dv

!
(30)

with ∂hσ(v,W,j)
∂λk

= −hσ(v,W,j)
σ · ∂kj(v,W)

∂λk
. We take into account that the definition (4) of

kj (v,W) with the derivative of the Heaviside-function θ (x) is the delta distribution δ (x).
In this way we get

∂kj (v,W)

∂λk
=
X
l

δ (4λ (v,wj ,wl)) ·
∂ 4λ (v,wj ,wl)

∂λk
(31)

with 4λ (v,wj ,wl) = ξλ
¡
v,wj

¢
− ξλ (v,wl) using the notation (10). Hence in the sec-

ond term in (30) vanishes because δ is symmetric and non-vanishing only for ξλ
¡
v,wj

¢
=

ξλ (v,wl). Thus

∂ENG

∂λk
=

1

2C (σ)

X
j

Z
P (v)hσ (v,W, j)

∂ξλ
¡
v,wj

¢
∂λk

dv (32)

In the discete case we simply replace in (30) the integration over the input data by the
respective summation.
We now pay attention to the second summand ∂EFL

∂λk
. For the discrete case, we can apply the

same arguments as above. Thus we get (almost surely)

4λk = −�λ
X
j

∂ξλ
¡
vl,wj

¢
∂λk

hσ

³
vl,W, j

´
(33)

For the choice of EFL according to the kernel approach (14) we have

∂EFL

∂λk
= − 1

4γ2

X
j

Z
P (v) gγ

¡
v,wj

¢ ∂ξ ¡v,wj

¢
∂λk

¡
x− yj

¢2
dv (34)

Putting all together we obtain for the relevance adaptation of the distance parameter in the
first continuous case:

∂EFL−NG

∂λk
= �λ

X
j

Z
P (v)

∂ξλ
¡
v,wj

¢
∂λk

³
hσ (v,W,j)− �̃λβgγ

¡
v,wj

¢ ¡
x− yj

¢2´
dv (35)
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The second continuous case with the sigmoid approximation (19) gives

∂ẼFL

∂λk
= − 1

2σ

X
j

Z
P (v) h̃σ (v,W,j)

∂k̃j (v,W)

∂λk

¡
x− yj

¢2
dv (36)

with ∂k̃j(v,W)
∂λk

=
P

l ζ
0 (4λ (v,wj ,wl))

∂4λ (v,wj ,wl)
∂λk

, which together with (29) and (32) gives
the learning rule.

6 Conclusion

We extended the usual unsupervised NG to a supervised fuzzy classification approach by
means of an extension of the cost function. In this way we are able to give risk estimations
of the classification accuracy. This is of particular interest e.g. in domains such as medical
applications since, on the one hand data might come with fuzzy labeling; on the other hand,
a judgment of the classification security is highly desirably. As demonstrated, there are
different ways to model fuzzy labeling, ranging from a simple post labeling to cost functions
where the labeling influences the location of the prototypes. We proposed three approaches
based on a gradient descent of an extended NG cost function, explicitly including the class
information of data. Preliminary experiments demonstrated the effect of these learning rules
on the classification accuracy and location of prototypes. Further experiments which also
incorporate the proposed framework of relevance learning will be the subject of further work.
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