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Abstract – This paper is concerned with the development and analysis of a nonlinear approach to 
modeling and control of nonlinear complex systems. In particular, the problem of designing a 
mathematical model of a nonlinear plant using only observed data is considered. For the 
identification of the plants, the concept of multiple models with switching is employed in order to 
simplify both the modeling and the controller design. For this reason, a Self-Organizing Map 
(SOM) is utilized to divide the operating region into local regions as a modeling infrastructure to 
construct local models. Based on the identified multiple models, the problem of designing 
controllers is discussed. The effectiveness of the proposed approach is shown through experiments 
for modeling and control of complex nonlinear plant. Its comparison with neural networks-based 
alternatives, Time Delay Neural Network (TDNN), shows clear advantages of local modeling and 
control in terms of performance. 
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1   Introduction 
 
 The identification of nonlinear dynamical systems has received considerable attention since 
it is an indispensable step towards analysis, simulation, prediction, monitoring, diagnosis, and 
controller design for nonlinear systems [1]. In particular, the problem of designing a 
mathematical model of a nonlinear plant using only observed data has attracted much interest, 
both from an academic and an industrial point of view. During the past few years, neural 
networks as a global model have been suggested for nonlinear dynamical black-box modeling 
and successfully applied to the prediction and modeling of nonlinear processes [13].  
 Global models, however, have shown some difficulties in cases when the dynamical system 
characteristics vary considerably over the operating region, effectively bringing the issue of 
time varying parameters (or nonlinearity) into the design. On the other hand, local modeling 
derives a model based on neighboring samples in the operating space to characterize some 
operating point or similar feature [2,4,6,7]. If a function f to be modeled is complicated, there 
is no guarantee that any given global representation will approximate f equally across all space. 
Moreover, nonlinear models are too complex to be used for controller design [1]. Thus, 
nonlinear control methods cannot serve all needs of real industrial control problems. 
 In this case, the dependence on representation can be reduced using local approximation 
where the domain of f is divided into local regions and a separate model is used for each region 
[3,4,7]. In a number of local modeling applications, a Self-Organizing Map (SOM) has been 
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utilized to divide the operating regions into local regions [3,4,12]. The SOM is particularly 
appropriate for switching, because it converts complex, nonlinear statistical relationships of 
high-dimensional data into simple geometric relationships that preserve the topology in the 
feature space [5]. Thus the role of the SOM is to discover patterns in the high dimensional state 
space and divide that space into a set of regions represented by the weights of each Processing 
Element (PE).  
 Linear models and associated techniques for linear control design are typically used to 
control the plant under certain specific operating conditions. This type of control is only valid 
in a small region around the operating point. For that reason, the concept of multiple models 
with switching, according to a change in dynamics, has been an area of interest in control 
theory in order to simplify both modeling and controller design [4,7]. The objective of this 
study, therefore, is to investigate if it is possible to obtain a better result in extending the 
formulation of the control problem from using just one global model to using several internal 
models. Thus a multiple modeling approach is presented and techniques to design controllers 
based on these model structures are developed. 
 
2    Piece-wise linear models for control 
 
 The idea of multiple modeling is to approximate a nonlinear system with a set of relatively 
simple local models valid in certain operating regions [2,7]. The SOM is employed as a 
modeling infrastructure to construct the local models. It provides a codebook representation of 
the plant dynamics and organizes the different dynamic regimes in topological neighborhoods. 
Thus we can create a set of models that are local to the data in the Voronoi tessellation created 
by the SOM. 
 The SOM is trained to position the local models in the embedded output space 
( T

dykkkky yyy ],,,[ 1, −−= Lψ ). At any time instant, the model representing the plant dynamics is 
chosen by the SOM depending on the history of the plant and then incorporated with the embedded 
control input space ( T

dukkkku uuu ],,,[ 1, −−= Lψ ). After the operating regions are divided by the 

SOM the underlying dynamics f is then approximated as U i
N
i ff 1=≈ , where N is the number of 

operating regions. N local predictive ARX models Nff ,,1 L  of the plant are described by  

Niubyaf
du

j jkji
dy

j jkjiki ,,1,)(
0 ,0 , L=+≈ ∑∑ = −= −ψ

   
(1) 

where jia ,  and jib ,  are the parameters of the ith model. Then, when each PE of the SOM is 
extended with a local model it can actually learn the mapping ),(ˆ ,,1 kukyik fy ψψ=+  in a supervised 
way (See [12] for details). Our proposed modeling methodology is summarized as follows: first, 
the delayed version of input-output joint space is decomposed into a set of operating regions that 
are assumed to cover the full operating space. Next, for each operating region we choose a simple 
linear ARX model to capture the dynamics of the region. Consequently, a nonlinear 
nonautonomous system is approximated by a concatenation of local linear models. 
 
3    Multiple model based control 

 
 Researchers have been interested in control of nonlinear systems for a very long time. 
Progress in nonlinear control design, however, has been difficult because of the intrinsic 
complexity of the problem [2]. In order to overcome these difficulties in designing controllers 
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for nonlinear systems, a simplified control method that keeps the advantage of the conventional 
approach is proposed, i.e., the SOM is explored as a modeling infrastructure, and the 
controllers are built based on SOM-based multiple models.  
 
3.1   Multiple inverse control 
 

Now we discuss the control problem for the local linear model using an inverse control 
framework [12]. The central advantage of such a framework is that an inverse model can be used 
directly to build a feed-forward controller. Thus, for the desired behavior, the controller just asks 
the model to predict the action needed. The system identification block has N predictive models 
denoted by { }N

iif 1= , in parallel. Corresponding to each model if , a controller iC  is designed such 
that iC  achieves the control objective for if . From (1), under the assumption that ob  is invertible, 
the control law of an inverse controller, oiC  , for the winning model, oif , can be directly calculated 

as 




 −−= ∑∑ = −= −+

− du

j jkji
dy

j jkjikiki ubyadbu oooo
1 ,0 ,1

1
0,, . Therefore, at time instance k, the control kiou ,  

can be obtained, if the future target of ky , 1+kd , is known. One advantage of this scheme is its 
simplicity and fast convergence to get the desired response. Another advantage is that the dynamic 
space is decomposed in the appropriate switching among very simple linear models, which leads to 
accurate modeling and controls. On the other hand, creating a set of models by embedded input and 
output may cause serious problem in the presence of large noise or outliers since the wrong 
predictive model due to noise may cause poor control. 
 
3.2   Multiple sliding mode control 
 
 While classical control techniques have produced many highly reliable and effective control 
systems, great attention has been devoted to the design of variable structure control systems 
(VSCS). The central advantage of the sliding mode control strategy is that it is an effective 
robust control strategy for incompletely modeled or uncertain systems [8,9,10]. Thus, the 
feature of the proposed control scheme is that the robustness for disturbances can be obtained 
by the simple control logic based on the linear model for each region. Another feature of the 
strategy is that it guarantees convergence of the system output to a vicinity of the 
predetermined, fixed plane in finite time, specified a priori by the designer. Consider one of the 
local l  multi-input multi-output models if  of the plant f , 

1,,,,1,,
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LL
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   (2) 

where available measurement lyu ℜ∈,  and the embedding dimensions of output and input are 
m  and n , respectively. The state-space model of (2) can be written as 

11211 +−−+ Λ++Λ+Λ+Φ= nknkkxk uuuxx
r

L
rrrr     (3) 

where lmT
klklmklkkmkk yyyyyyx ⋅

−+−−+− ℜ∈= ],,,,,,,,[ ,1,1,,11,11,1 LLL
r  is the system state vector 

which is available for measurement, lT
klkk uuu ℜ∈= ],,[ ,,1 L

r  is the control effort, lmlm ⋅×⋅ℜ∈Φ  is 

a block diagonal matrix, lidiag i ,,1),( L=Φ=Φ , and llm
n

×⋅ℜ∈ΛΛ ,,1 L  have the following 
forms: 
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Also defining the tracking error vector as 111 +++ −= kkk xre
rrr , where 

lmT
klmklkmkk ddddr ⋅
++−++−+ ℜ∈= ],,,,[ 1,,2,1,1,2,11 LLL

r  represents a given desired signal vector 
assumed to be bounded, the sliding surface can be defined in the space of the tracking error 
vector given by 

k
T

k eCS
r

=      (4) 
where 
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 The ideal quasi sliding mode defined by Gao et al [9] occurs if there exists an integer qk  
such that the trajectory crosses the sliding surface in succession keeping on within a specified 
band for all qkk ≥  ( qk  is the time when the trajectory hits the manifold). Substituting (3) in the 
ideal quasi-sliding mode condition, 0==+ kk SS 1 , yields the equivalent control 

{ }1121
1

1 )()( +−−+
− Λ−−Λ−Φ−Λ= nkn

T
k

T
kk

TTeq
k uCuCxrCCu

r
L

rrrr   (5) 
and the equivalent control yields the following equivalent sliding system taking place on the 
sliding surface 

1
1

11
1

111 )(])([ +
−−

+ ΛΛ+ΦΛΛ−= k
TT

k
TT

k rCCxCCIx
rrr   (6) 

where it was assumed that 1
1)( −ΛTC  exists. Equivalently, (6) can be represented in terms of the 

tracking error by the following equivalent linear system 
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The characteristic polynomial of the equivalent system is )det()( Φ−=Φ Iλλπ . Given the desired 
characteristic polynomial as 22

12
1

22)( −
−− +++= m

mm υλυλλπ L , we can compute TC  by comparing 
)(λπ  with )(λπΦ . This condition guarantees an asymptotic convergence to the desired output. For 

a discrete-time system described by (3), the reaching law for the discrete-time sliding mode control 
is )sgn(1 kkkk STTSSS βα −−=−+ and the control law is derived by comparing 

k
T

k
T

kk eCeCSS
rr

−=− ++ 11  with the reaching law, which yields, 
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( ) [
])sgn()1(
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Λ−−Λ−Φ−Λ= +−−+

− r
L

rrrr
  (8) 

Salient feature of the multiple sliding mode controller is that one can obtain faster convergence 
to get the desired response due to multiple control scheme and one can employ variable 
structure system to control unknown nonlinear plants while gaining indemnity against noise 
and parameter variations. 

 
4   Comparative Study 
 
 Flight vehicles, such as missiles and aircraft, are very complex systems that are typically 
non-minimum phase and have aerodynamic coefficients which vary over a wide dynamic range 
due to large Mach-altitude fluctuations [12]. Thus the proposed control algorithms were 
applied to the LoFLYTE® UAV designed by Accurate Automation Corporation (AAC) to 
examine the effectiveness [14]. Our objective is to design multiple controllers for unknown 
nonlinear MIMO plants that guarantees global stability and forces the output to asymptotically 
track the desired signal without any a priori knowledge of the plant. In this study, we wish to 
estimate and control the aircraft’s lateral motion under the assumption that we can only access 
roll-rate (p) and yaw-rate (r), while the goal is to track the desired trajectories ( dp  and dr ) 
during the course of the flight considering the case of an aircraft moving with a constant 
throttle. 
 
Table 1. Comparison of modeling performance 1  for the lateral motion ( p  and r ) of the 
LoFLYTE® UAV. 

NRMSE 
Methodology roll-rate ( p ) yaw-rate ( r ) 

Multiple models (6×6) 4.7e-3 3.8e-3 
TDNN (16:50:2) 7.9e-3 3.9e-3 

 
 To model the aircraft lateral dynamics, a total of 2 SOMs were used for quantization of each 
embedded output as predictors, [ ]Tdykkky yy 1, ,, +−= Lψ . Thus the linear coupling between p  and 
r  is only implicitly modeled2. In this way, each output (either p  or r ) of the aircraft can be 
described by a dynamic model that takes into account the control input variables such as 
aileron ( aδ ) and rudder ( rδ ), Nify kykuik ,,1),,(ˆ ,,1 L==+ ψψ  where 

{ }Tdukrkrdukakaku 1,,1,,, ,,,,, +−+−= δδδδψ LL . By doing this, the complexity can be reduced and it 
helps to understand the raw data. We selected an embedding dimension based on the Lipschitz 
index (see [11]) as 2=dy  for each output and 6=du  for 2-D control inputs (aileron and 

                                                 
1 Modeling performance was evaluated through Normalized Root Mean Square Error (NRMSE) 

∑ ++ −=
L

k kk yyLy 2
11 )~(/1)max(/1  

2 Due to difficulties related with dynamic range normalization, multiple models that take state-coupling into 
account are not as accurate as this approach. Instead, we utilize the delayed outputs in order to compensate 
for the disregarded information due to the coupling. 
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rudder). Each SOM was trained with the embedded output, yψ  whose dimension is 2, over 
5000 samples and the reasonable result for identification of the roll-rate was obtained with a 
6×6 grid map ( 36=N ). 
 After training the SOMs, 36 multiple models were constructed and the created models were 
tested by new sequence with 1,000 samples. Table 1 shows the identification performance of 
two dynamics of the system with 36 models and compares their performances with that from a 
TDNN model. Training conditions for a TDNN model, such as the embedding dimension was 
kept the same in this comparison between the local modeling and the global modeling. The best 
result with a TDNN model was obtained from 20 Monte-Carlo simulations with 50 PEs in the 
hidden layer. From the table, we can conclude that the constructed SOM-based network is a 
good model of the underlying dynamics because it provides smaller NRMSE for all dynamics 
than the TDNN model. Consequently, it turned out that the proposed strategy of finding proper 
location of fixed models depending on the prior information available to the designer for 
finding aircraft dynamics is superior to those using a single global nonlinear model. In 
addition, it should be noted that the proposed modeling scheme makes identification of the 
plant very compact and computationally efficient since the aircraft dynamics are captured in a 
compact lookup table of linear models. 
 

  
(a) 

 
(b) 

Figure 1. Comparison for controlling (a) roll-rate and (b) yaw-rate to track the set point in the 
presence of noise by TDNNC, MIC, and MSMC. 
 
 We now consider the control problem with the SOM-based local models created. Here, we 
performed a simulation to control the roll-rate ( p ) and yaw-rate ( r ) of the aircraft by aileron 
( aδ ) and rudder ( rδ ), setting elevator to zero and throttle to constant. Thus, once we have the 
linear models for the roll-rate and the yaw-rate, and the desired values, 1, +kdp  and 1, +kdr , the 
inverse controller (inversion-based predictive model), ka,δ  and kr ,δ , for the aircraft’s roll-rate 
and yaw-rate tracking is obtained. And the sliding mode controller was designed such that the 
poles of the error dynamics are placed at 0.5 and other parameters are set to 5.0=Tα  and 
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001.0=Tβ . Also, for performance comparisons, we applied the TDNN controller, which has 
100 PEs in the hidden layer, for the same control problems. 
 

  

 
(a)    (b)    (c) 

Figure 2. Comparison for controlling roll-rate and yaw-rate to track an arbitrary trajectory with 
measurement noise by (a) TDNNC, (b) MIC, and (c) MSMC. 
  
 Figure 1 compares the set point tracking performance of the TDNNC, the MIC, and the 
MSMC in the presence of noise whose level is 20 dB of SNR. From the responses it can be 
seen that the multiple controller approach is very good except for the first few seconds. 
However, it shows poor transient response when the global control, the TDNNC, is utilized. 
Another performance test is to enforce the tracking of the roll-rate and yaw-rate to signals 

1, +kdp  and 1, +kdr  which are given in real time during the course of the flight, while being 
subjected to unmeasured sensor disturbances. The 2 output measurements are corrupted by 
zero-mean random sequences with 20 dB of SNR. The results of a flight test with the proposed 
method are shown in Figure 2 where we also show the same with the TDNNC. It can be seen 
that the roll-rate and the yaw-rate track their command signals quite well even under the 
existence of measurement noise by the multiple controllers. The simulated flight test 
demonstrates that the proposed controller is capable of closely approximating the given 
mission by only looking at the past information. Also, it proves that the multiple controller 
framework indeed provides exceptional tracking. 
 
5   Conclusions 

 
 The problem of nonlinear system identification and control system design was addressed 
under the divide-and-conquer principle. Especially in the case of unknown dynamics, where 
only input-output data from the plant are available, the proposed method is able to approximate 
the nonlinear dynamics of the plant using a piece-wise linear dynamical model that is 
optimized solely from the available data. An added advantage of the proposed local linear 
modeling approach is it greatly simplifies the design of control systems for nonlinear plants. In 
general, this is a daunting task and typically practical solutions involve linearization of the 
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dynamics and then employing well-established controller design techniques from linear control 
systems theory. While designing globally stable nonlinear controllers with satisfactory 
performance at every point in the state space of the closed loop control system is extremely 
difficult, and perhaps impossible to achieve especially in the case of unknown plant dynamics, 
by using the local linear modeling technique presented, coupled with strong controller design 
techniques from linear control theory and recent theoretical results on switching control 
systems, it becomes possible to achieve this goal through the use of this much simpler 
approach of local modeling. 
 The problems that arise due to the uncertainties of the plant model and measurement noise 
are alleviated by incorporating the robustness provided by the sliding mode technique into the 
multiple modeling approach. The simulation results demonstrated that the algorithm proposed 
is able to compensate deficiencies caused by the imperfect observations of the state variables 
and complex plant dynamics, driving the tracking error vector to the sliding manifold and 
keeping it on the manifold. In addition, the proposed method shows better robustness against 
noise, faster transient response, and better steady-state accuracy of the controlled system by 
switching local controllers astutely through the SOM than other neural network-based 
alternatives. 
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