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Abstract - In this paper, an extension of SOM is proposed in which the mapping objects themselves
are self-organizing maps. Thus, a “SOM of SOMs,” referred to in this paper as SOM?, is presented. In
SOM?, each nodal unit of the conventional SOM is replaced by a function module of SOM. Therefore,
SOM? can be regarded as a variation of a modular network SOM (mnSOM). Each child SOM of
SOM? is trained to represent a distribution of a data class, while the parent SOM generates a self-
organizing map of the group of distributions modeled by the child SOMs. This extension of SOM is
easily generalized to any combination of SOM families, including cases of neural gas (NG), in which,
for example, “NG* as NG of NGs,” and “NG-SOM as SOM of NGs” are possible. Furthermore,
SOM? can be extended to the case of SOM", such as “SOM> as SOM of SOM?.” In this paper, the
algorithms of SOM? and its variations are introduced and some simulation results are reported.
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1 Introduction

The modular network SOM (mnSOM) proposed by Tokunaga et al. is a generalization of the con-
ventional SOM, and it has enlarged the application field of self-organizing maps [1, 2]. The mnSOM
has a modular network structure in which function modules of multi-layer perceptrons (MLPs) are
arrayed on a lattice. Each MLP module of the mnSOM represents a “codebook function™ instead of
a codebook vector of the conventional SOM. Thus, the mnSOM is an SOM in function space rather
than vector space. Further, because the mnSOM is good at dealing with functions, systems, and log-
ics, etc., the mnSOM can call forth tasks such as time series classifications, control problems, and
multisystem identifications [1, 2, 3].

These are what the mnSOM has given us. However, the mnSOM has broadened another new
horizon. By adopting various kinds of neural networks or adaptive learning algorithms other than
MLPs, one can easily create new types of SOM architectures. This means that the mnSOM allows one
to design SOMs in the way most suitable for one’s tasks. In fact, some extensions of SOM proposed
in the past can actually be re-described as variations of the mnSOM. For example, the operator map is
described as an mnSOM with linear transformation modules [4], whereas the PCA-module-mnSOM
is equal to an adaptive subspace SOM (ASSOM) [5]. If one employs Hebbian neurons as the function
modules, then the mnSOM becomes a conventional SOM.

Above all, however, the most curious variations are those in which the function modules are the
SOMs themselves, i.e., SOM-module-mnSOM. In such a case, the mnSOM becomes an assembly of
basic SOMs arrayed on a lattice (Fig. 1). Thus, this kind of mnSOM comprised of SOM modules
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Figure 1: The scheme and the architecture of the SOM?

can be regarded as an “SOM of SOMs,” abbreviated as “SOM?” in this paper. Further, because each
child SOM module of an SOM? is trained to approximate a distribution of a class dataset, the entire
SOM? represents a set of distributions of data classes. The method therefore involves the generation
of a feature map of a group of class distributions. More precisely, each class is assigned to a point in
the parent map, the position of which signifies to what degree the distribution of the class is similar or
different to others. This characteristic of SOM? is quite different from a conventional SOM, in which
each data vector corresponds to a point on the map and a class distribution is represented as a region
where the vectors of the class are mapped.

Such an expansion of SOM would be useful in cases when differences between class distributions
were considered more essential than differences between data vectors. As an example, let us consider
a classification task of 3D objects from sets of photographs. In this case, each class consists of a set of
2D images of an object taken from various viewpoints. Even if some photographs of different objects
may look similar, the entire distributions should be different. In other words, each object corresponds
to a unique distribution of data vectors of 2D images. Therefore, it is necessary to generate a map of
classes rather than a map of data vectors. In such a way, similar cases could be identified when one
measured a set of sample data from each system, object, or parameter set, etc.

Theoretically, an SOM forms a bounded manifold in the high-dimensional data space as an ap-
proximation of the data distribution. Thus, the chief task of SOM? is regarded as the generation of a
feature map of a set of manifolds. It is easy to generalize SOM? to cases of SOM” such as “SOM?
as the SOM of SOM?s.” In addition, other types of neural maps, e.g., those for neural gas (NG) [7],
can be employed as replacements for the parent and/or child SOMs. For example, “NG of NGs”
(NG-module-mnNG), “SOM of NGs” (NG-module-mnSOM), and “NG of SOMs” (SOM-module-
mnNG), which we will abbreviate here as “NG2,” “NG-SOM,” and “SOM-NG,” are all possible as
constituents of the SOM” family.

In this paper, the architectures and the algorithms of the SOM" family are introduced, and some
simulation results are reported.
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2 Theory of the SOM" Family

2.1 Architecture and Algorithm of SOM?

Let us first consider the dataset dealt with by the SOM?. Because the goal is to map a group of class
distributions, all data vectors are assumed to be classified and/or labeled in advance. There is also the
issue of how to deal with non-labeled datasets, but that is not the focus of this paper. Now suppose
that there are / classes, each of which has J sample data. Thus, let D; = {x;1,...,X;;} (i =1,...,])
denote the dataset of the ith class. In addition, it is assumed that the distribution of D; is approximated
by the manifold U;, the dimension of which is equal to that of the child SOMs.

Let SOM? have K child SOMs {M!,..., MX}, each of which has L codebook vectors WX =
{whl. ..., whL). (Here, let the superscripts represent the indexes of SOM?, while the subscripts rep-
resent the indexes of class or data.) The tasks of the SOM? are (i) to represent the manifold set {U;}
by using the child SOMs and (ii) to generate a feature map of the manifold set. Tasks (i) and (ii) are
processed in parallel.

As in the case of the basic SOM, the algorithm of SOM? consists of three processes: the compet-
itive process, the cooperative process, and the adaptive process. Before describing the details of the
algorithm, let us first give a brief overview. (i) In the competitive process, the child SOM that best
represents the distribution of D; is chosen as the best matching map (BMM) of the ith class. This
process is then repeated for each class. (ii) In the cooperative process, a set of learning rates are
calculated by using the neighborhood function. (iii) In the adaptive process, all codebook vectors are
innovated such that each child SOM represents the weighted interior division of the manifolds {U}},
the weights of which are given by the learning rates. These processes are iterated until the calculation
is converged.

Considering the above points, the algorithm of the SOM? is formulated as follows. In the com-
petitive process, the distance between each class (D;) and each child SOM (M*) is first evaluated.
Now let L2(D;, M*) denote the square distance between D; and M* given by the sum of the square
quantization errors.

LD, MY = Ef = = ) & )
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€ij =
Here, Ef‘ denotes the average quantization error, whereas ef.‘*j and wi‘; represent the square quantization

error and the codebook vector of the best matching unit (BMU) within M*. After evaluating the
distances between D; and every child SOM, the least distance map M is chosen as the BMM of D;.
Thus the index k; of the BMM M is given by

ki = arg min LZ(D,',Mk) = arg min Ef 3)
k k

In the cooperative process, a set of learning rates {(Di.‘} is calculated as follows.
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Here, h,[-, -] is the neighborhood function which shrinks with the calculation time 7', whereas d(-, -)
refers to the distance between two nodes in the map space.

In the adaptive process, each child SOM is innovated so as to be the weighted interior division
of the data distributions. More precisely, M is expected to represent the interior division of the

manifolds {U,..., U;} with the weights {d)’[ s (D’I‘}. However, there is no direct way to calculate
the codebook vectors from the distributions {D;} as their interior divisions. To solve this problem, let
us introduce an extra set of basic SOMs {l? L., U 1} which tentatively approximates the manifold set

{U;}. Thus, the codebook vectors {w*!} are assumed to be innovated by the interior divisions of the
sets of codebook vectors {U;} as follows.

whl = Z (Di-‘vﬁ &)

Here, vﬁ represents the /th codebook vector of U ;. In addition, let us assume that l?i 1s estimated from
the ith BMM M:'. Therefore, {V;} are calculated by the following equations.
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Here h.[-, ] is the neighborhood function of the child SOMs, and lw represents the index of the BMU
of x; ; within the BMM of D;. By combining (5) and (7) together, the adaptive process is formulated

as follows.
)i J 1 J
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Please note that the extra set of SOMs {U;} has disappeared in (8). This is because {U,} is defined for
the convenience of explanation and is therefore not necessary in the practical calculation. These three
processes are iterated until all codebook vectors are converged.

The task of the SOM? is interpreted as the estimation problem of the probability density func-
tion (pdf) varied by hidden parameters. By accepting this interpretation, each child SOM thereby
represents the pdf at each hidden parameter state. Thus, the algorithm of SOM? described above is
regarded as a modified EM algorithm, in which {M*} and {U;} are estimated reciprocally by each
other.

2.2  Generalization from SOM? to SOM”

Equation (8) has a recursive structure similar to that of a Russian doll, in which the adaptation algo-
rithm of the basic SOM is nested into itself. Therefore it is easy to generalize to cases of SOM", such
as SOM? as the SOM of SOM?, through further nesting.

Now let us consider the case of SOM?. Let x; j; denote the kth data vector of the jth sub-class of
the ith class, while w"”™" denotes the nth codebook vector (the 3rd level) of the mth grandchild SOM
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(the 2nd level) of the /th child SOM (the Ist level). Then the codebook vector w”™" is innovated by
the following equation.

I J K
Wl,m,n — Z a,i {Z ﬁ;’j} {Z yzj’kx,-,j,k}} ©)
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Here, a, 8 and vy are the learning rates of each level given by
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Here, hy, hy, h3 represent the neighborhood functions of corresponding levels, while l:f, m;“;, nfj’}( each

denote the index of the best matching unit/module of the corresponding level. For the case of SOM”,
all one has to do is to repeat the above equations 7 times.

2.3 Variations of SOM? with the Neural Gas Algorithm

By adopting the algorithm of neural gas (NG), several variations of SOM? can be created. First let
us consider the case of “NG of NGs,” i.e., NG2. In this case, the cooperative process of SOM? is
replaced by the NG algorithm. Thus, equation (4) is replaced by

exp[—s(M*, D;)/2,(T)]

Ph = (14)

exp[—s(M*, D))/ ,(T)]

1
i'=1

Here, s(M*, D) gives the order of the kth child NG for the ith class, while 1,(T") gives the rate of
decay. The ith manifold is approximated by the 1st order child NG, i.e., the best matching neural gas.
Now let W?’l be the /th codebook vector of the best matching neural gas of the ith class. The learning
rate ;[/f’j is described as follows.

—s(w™ x; )/ AT
wij _ Jexp[ S(Wl ’X,J)/ ( )] (15)
Z exp[—S(Wj’l, X )/ A(T)]

=1

549



WSOM 2005, Paris

OXCMBOM (8 bl X M0 bl

(@) (b)

IOy DS 0

T=61222 ¢ Unit=—1717386318

(©

Figure 2: The result of mapping artificial datasets by using SOM?. (a) The distributions of the 3 datasets. (b)
The set of maps generated by the 10 child SOMs. (c) The parent map of the child SOMs

Equation (6) is replaced by (15). Therefore, by combining (14) and (15) together, the adaptation
process of NG? is formulated as follows.

I J I J

whl = 3 TRyl it = ) Pl xi; (16)
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If one needs the “SOM of NGs” (NG-SOM), then the answer can be obtained by combining (4) and

(15) together as

I J 1 J
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whereas the combination of (6) and (14) becomes the “NG of SOMs” (SOM-NG). In addition, if one
employs other types of mapping algorithms, then the number of variations will increase further. Of
these variations, one of the most promising architectures may be the NG-SOM, i.e., the “SOM of
NGs.” This is because the child NGs have no restrictions on the dimensions of the target manifolds,
whereas the parent SOM allows one to visualize the relationships of the classes. The NG-SOM
therefore inherits the advantages of both algorithms.

3 Simulations and Results
To validate the abilities of a SOM? family, some simulation tasks were employed. The first task was

to generate a feature map of artificial manifolds, as shown in Fig. 2(a). The number of classes was
3, each of which consisted of 100 data vectors, and the SOM? had 10 child SOMs consisting of 15
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Figure 3: The map of 3D objects from 2D images by using the SOM?

codebook vectors. Both the parent and child SOMs had one-dimensional array structures. Fig. 2(b)
and (c) represent the child and parent maps respectively. The SOM? generated a continuous map of
the manifolds in which the child maps showed change gradually. Furthermore, the SOM? interpolated
“intermediate manifolds” between the given data classes.

The second task was to generate a map of 3D objects from 2D projected images. Because a set
of 2D images of an object taken from various viewpoints forms a 2-dimensional manifold, the dis-
tribution of the image data can be modeled by a basic SOM. Therefore SOM? would be the desired
architecture for the task. Please notice that the SOM? does not know how 3D objects can be recon-
structed from their 2D images. Fig. 3 is the map of the 3D objects generated by the parent SOM. Each
box represents the corresponding child SOM, in which the 3D objects acquired by the child SOMs
are depicted. The thick boxes in the figure represent the BMM of the training data classes. The parent
map was generated successfully, showing a good continuity of varying 3D shapes. Furthermore, the
SOM? interpolated unknown “intermediate 3D objects” between the BMMs.

One of the possible applications of such 3D object mapping is face recognition. Fig. 4 shows our
tentative results of the mapping of facial images using an NG-SOM. Similar to the second task, each
class consisted of a set of photographs taken from various viewpoints. Results showed that each NG
module learned the set of facial images of a person. Though the SOM? also showed similar results
(not shown), the NG-SOM is more suited for this type of task because the NG-SOM can adapt not
only to differences in viewpoints but also to differences in facial expressions and hairstyles, etc.

4 Conclusion

In this paper we have proposed an extension of SOMs called SOM? and its variations. SOM? provides
a method for the topological mapping of a set of data distributions. Simulation results suggest that
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Figure 4: Map of facial images using NG-SOM

the SOM? family will be a powerful tool for class visualization and analysis. The validation of such
abilities in actual applications, including facial image recognition tasks, is currently in progress.
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