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Abstract – It is shown that the theories of Computing with Activities and WHU-structures can 
be combined with a quantum mechanical model of the neural nets. Besides a short introduction 
in recent experimental results regarding these structures of SOMs the mathematical derivation 
of the quantum mechanical model of the neural nets is discussed. Furthermore it is shown how 
a “neural based” quantum mechanic wave function ),( tx

r
Ψ can be declared. 
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1   Introduction 
 
In 1999 the corresponding author presented a theory about the quantization of neural nets [3], 
which was based on first ideas of [2], [6] on how to use the mathematical fund of physics to 
describe the behaviour of SOMs. Even though this theory was widely accepted, two major 
questions were left unanswered: 
 

• Where can the wave function Ψ be found in a SOM? 
• How could “jumps” of the winner neurons be explained by the wave function Ψ?   

 
The first question involves the demand of a kind of time behaviour of the SOM which was not in 
the focus of most investigations that have been done in the past, the second question is equal to the 
criticism that the classification results of a SOM, represented by a winner neuron, can jump from 
one position to another, even if the system to be evaluated is changing only slightly. Concerning 
these questions we enlarged the theory of the SOMs in two directions: Firstly we introduced the 
theory of the “Computing with Activities” [4] to solve the problem of discontinuous classification 
behaviour of the SOMs, secondly we introduced the theory of the WHU-structures [5] to show how 
time behaviour of SOMs can be defined by a new kind of neighborhood function. 
 
2   Computing with Activities (CWA) 
 
The basic idea of the Computing with Activities is to code complex situation vectors not by the 
activity of one (winner) neuron but by the activity scheme of a more or less complex set of 
neurons, resp. the whole SOM. Especially if such a set is placed on a closed SOM (a closed neuron 
grid), one can expect that all components of a system state vector of higher dimensions (system 
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state vector coding a large number of aspects) can contribute to a scene analysis in an adequate way 
(resp. having the possibility to create the same or similar neighborhood occurrence), whereby no 
effects of the margins or no unstable break down effects will occur. This attribute can be seen very 
clearly if a closed SOM is trained by a simple set of state vectors as shown in Figure 1; as on the 
closed grid every neuron has the same number of neighbors, the resulting activity pattern of the 
map shows a highly symmetrical form. 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Classification result of a trained closed SOM (3-Dim. and 2-Dim.) 
 

Certainly this situation will change if complex situations are stored by the activity pattern, as 
shown in Figure 2, whereby even in that situation no break downs because of margin effects can be 
observed.   
 

  
 

Fig. 2: Activity structure of a closed SOM representing a situation of a robot soccer match 
 
But there is another thing, which can be pointed out from Figure 2: the winner neuron changed, 
even though the situation changed only slightly. Apart from that the structure of the activity pattern 
only changed slightly, too, or more globally:  If a situation to be classified by a SOM changes 
slightly, obviously the coordinates of the winner region can: change, not change or jump, whereas 
the activity pattern will be modified in an adequate way to the change of the system. So we can 
learn that the winner neuron seems to represent a scene by a “so far unknown” jumping (unstable) 
classification-scheme but the overall activity pattern represents the scene by itself and its gradient 
of change accordantly. It sounds hard but the role of the winner neuron will resign for a more 
global coding if CWA is used while the overall activity pattern of the SOM bears the relevant 
information. It must be pointed out that also “common” trained SOMs show this behavior, but 
unfortunately the activity structure is hardly ever analyzed. Otherwise, looking at the behavior of 
biological neural nets (for example at the so called Place Cells of the Hippocampus) we see that 
nature chose this special coding long time ago, too, as in all wet nets neuron ensembles act as 
representatives and not single neurons (grandmother neurons). Also we realize that the power to 
store information is widely larger by this coding structure as e. g. now by a neuron grid of 30 * 30 
neurons about 1013 pattern can by stored compared to only 900 of a common SOM. 
Slight change in the systems, slight change in the classification behavior, this was one requirement 
we needed to formulate a wave function Ψ!   
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3   WHU-structures 
 
Even if the CWA-method demonstrates that a static development of a system can be mirrored in a 
steady change of an activity pattern, we are still in the need to formulate a model which enables 
that these changes can be evoked by the SOM itself. It’s not only that such models will provide a 
first temporary based memory structure of a SOM (a short time memory), but also such a model 
provides the time window we need to describe and interpret the wave function Ψ . Such a model 
can be done by using two different kinds of ‘post-processing strategies’. The first of them defines a 
bias function, which emphasizes the neurons with the largest activities, the second one a 
combination of these neurons which are able to hold each other on a higher level of activity over 
some time regardless of their position on the neural grid. In our experiments we tried both methods 
and detected that the first one is not an adequate way to deal with ‘activities of higher interest’ as 
the postulated bias function has to be case-related or recalculated from classification step to 
classification step. Indeed the second way to emphasize the activity pattern of interest works more 
convenient and - as we have to learn from neurology - is closer to the principal of how brain works. 
For that reason we define a new kind of ‘activity-oriented’ neighborhood on the SOM called ‘Wide 
Hook Up’-structure (shortly WHU-structure). The resulting net structure with a WHU-structure is 
more or less a SOM with an arbitrary activity-oriented neighborhood function, which simulates an 
involved short-time memory structure. Basic assumptions of a WHU-structure are: 

• The used neural structure represents a complete graph with an arbitrary neighborhood 
function, which is defined by the weights of the WHU-structure. 

• The modified SOM contains lateral trainable connections, which can change their 
interneural weights by a special training step. 

• During every training or classification step a WHU-structure is build up by those neurons 
that can maintain or enlarge their activity by the lateral activity transfer. That means that 
the WHU-structure on the neuron graph forms something like a short cut or ‘conversation 
cycle’, which empowers the involved neurons to stabilize and/or intensify his or her own 
activity during a training or classification step. 

• The neurons (and optionally the WHU-structures) abate their activities (weights) in an 
exponential way over the next calculation steps. In that way a time-dependence of a WHU-
structure based short-time memory is defined. 

 
For a better understanding Figure 3 shows the basic principle of a local WHU-structure.  

 
 

Fig. 3: Schematic SOM with a WHU-Structure 
 
If an activity of a net is calculated under these conditions, structures like those shown in Figure 4 
can be expected. Please note that the ‘interaction circles’ are closed loops as the neuron grid is 
placed on a closed topological form. So in Figure 4 a triangle can be detected on the left hand side, 
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while a zigzag course can be detected in the middle of the activity pattern. These activities diminish 
slowly, according to the decay factor that is given. Thus they still exist during the next calculation 
cycle even if the situation changed. 
 
 
 
 
 
 
 
 
 

 
Fig. 4: WHU-structure activity on a closed SOM 

 
CWA by this way, it is logical that activities – caused by complex situations like e.g. the 
classification of a robot soccer game – influence each other. In addition special situation activity 
presentations can be intensified or understated by changing the interneural weights of the WHU-
structures. Furthermore the underlying activity contributions of the neurons involved in a WHU-
structure can boost this structure so far that at the end of a calculation step ‘special activity 
structures’ will be more dominant than the single activities of the involved neurons. So a special 
detector of interesting input data constellations can be formed. 
CWA and WHU-structures also mean, that these nets show pseudo-oscillations. That means that 
complex systems will remember the past by the exponential decay of the activity structures over a 
variable time even if the net is uncoupled from input. To examine this behaviour we designed a 
hyper-classificator structure of three downstream nets whereby the activity patterns of the lower 
nets serve as input patterns for the upper nets. If the activity of such a structure is calculated, a 
WHU-structure is initiated like exemplary shown in Figure 5. 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5: Exemplary hyper-classificator structure with activated WHU-Structures 
 
An example of the results of our simulator is shown in Figure 6. The dimensions of the networks 
have been 5*5 neurons of networks number one and two and 25*25 neurons of net number three. 
Figure 6 shows the initial activity contributions of these three nets. Please note that the upper part 
of the figure shows the landscape of the all-around activities, while the lower left hand side shows 
the numerical activity values of the first net. On the lower right hand side the visualized cube 
shows the activity pattern in that way, that the WHU-structures (with the high activities) are the 
lines on the top of the cube while the ‘normal’ activities are placed on the bottom of the cube.  
As clearly can be pointed out, at the beginning of the experiment all nets show a typical activity 
structure. At the next step of the experiment the upper net was uncoupled from the lower structures. 
Now the activity of the larger net structure subsides very rapidly, as can be seen by the little height 
of the activity structure on the right part of Figure 7. Nevertheless the principal form of the WHU-
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structure did not change much which is indicated by the large number of lines still located at the 
top of the cube shown on the lower part of Figure 7.  
 
 
 
 
 

 
 
 
 
 

Fig. 6: WHU-structure simulation  
 
Some calculation steps later the activity structure of the hyper-classificator decreased a little bit 
more, but the principal form of the WHU-structure still ‘survived’. It takes some other calculation 
steps until the WHU-structure totally vanishes. 
 

 
 

Fig. 7: WHU-Structure Simulation after the upper net is disconnected 
 
Temporal behavior of the wave function Ψ, this was the second requirement we needed to 
formulate a quantum mechanical wave function Ψ.  
 
4   Potential oriented description of the neural nets 
 
If we want to use the mathematical fund of quantum mechanics, we first have to define a potential 
oriented description of the neural net. We do so by defining a so called “classification potential” 
and “conditioning potential”. These potentials are function of the following form 
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whereupon n indicates a neuron of the neural net with N neurons and n
mw  indicates the mth degree of 

freedom of the M degrees of freedom of the neuron n. These degrees of freedom correspond to the 
inter-neural weights on the SOM (the WHU-structure) and the momentary activity of the neurons 
evoked by a stimulus given by the input layer at a time t.  Now we can say that the net structure is 
in a steady state for 
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and be perturbed under the Lagrange function of the form  
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If and only if the net has adapted in the condition-state asymptotically we call )(tw
r the global 

representative RNET whereat now L can be identified as a Lyapunov function for which holds 
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where the xi are the transformed coordinates (degrees of freedom) of the vector )(twr  to an new 
(local) co-ordination system for which holds 
 

0
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if the stimulus meets the vector RNET. Depending on these preconditions the conditioning-state of a 
neural net can now be understood as a non-equilibrium-state of the potential-functions Ep and Up, 
which forces a change of the degrees of freedom xi of the net to adapt the coordinates of the desired 
net structure 0

rr
=X . Furthermore a Hamilton-function H of a neural net can be defined, for which 

holds 
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Or briefly for better reading H=2Ep-L=2Ep-(Ep-Up)=Ep+Up. If we assume that neural nets can be 
identified as conservative n-particle systems the change of the degrees of freedom is given by 
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Following the last expression, the actual energy-function H can be separated in two Hamilton-
functions 
 

H H HK S= +                  (8)

where HS describes the energy, which forces the net to adapt to a new vector RNET by conditioning, 
and HK describes the form of the classification potential of the net during a pure classification state. 
 
If a Laurin serial develops HS, the adaptation to the new vector RNET follows the formulas 
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so the Lagrange function L is the generator of the net modifying operator  
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So we see, that in both coordinate systems, defining the wi and xi, a change will take place 
accordantly. 
Now we define (a momentary, only at the time t existing) activity function ),( tx

r
ψ that will act as 

follows: if the classification concept (represented by the potential Ep) is met by a stimulus for the 
winner and the other neurons hold 
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Surely a possible form for ),( txrψ  will be given by 
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whereby the expression xxE pe
rrr

)(− describes the time-independently classification behaviour of the net 
(represented by the configuration-vector RNET) and e E p U p t− −( )  the disturbance of the net 
activity ),( tx

r
ψ  under conditioning. Furthermore )(xE pe

rr
− equals the so called “impulse vector” of a 

neuron/neural net thus describes the change of a stimulus by the configuration of the weights. 
These impulses will never be equal to zero! Otherwise for a met classification holds 0

rr
=X  and for 

that reason holds ),( tx
r

ψ =1 claimed by formula 11. If )(tx
r

∆ denotes the flow of the vector )(tx
r and 

if Fi= x& i stands for the conditioning-impulse of the degree of freedom xi the conditioning of a neural 
net can be described as the shift of the potential of the RNET forced by the Lyapunov-Lagrange 
function L=Ep-Up ≠ 0 as shown in Figure 8. 
 

 
Fig. 8: Translation of the potential Ep forced by L=Ep-Up ≠ 0  

 
5   Quantum mechanical description of the neural nets 
 
Formula 10 describes the behaviour of a neural net in its classical image only, so ),( tqrΨ equals a 
probability function of the net activity at a given point t in time. 
Next we remember that the Schrödinger equation 
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is the quantum mechanical image of the Hamilton-Jacobi equation 
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which describes the net behaviour in its classical image. Here for S holds 
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whereby the new coordinate q corresponds to x. 
  For transforming this equation into its quantum mechanical image, the net parameters have to be 
transformed into operators as follows 
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As HG = HK + HS we get for the Hamilton-operator H
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which leads to the following form of the Schrödinger equation 
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By separating the activity-function ),( tqrΨ  into a classification-related activity function ),( tqK
r

Ψ and a 
conditioning-related function ),( tqS
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two Schrödinger equations will result 
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With (10) we get for ),( tqK
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Ψ  and ),( tqS
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whereby for the mass of the neurons holds 2m=1.  
 
As the expression 
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is equal for both activity functions, we will get for the generalised activity function ),( tqrΨ   
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where dke− denotes the decay of the activity over a calculation step in the time interval k. As for the 
time-independently Schrödinger equation holds 
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in the equilibrium state Ep-Up=0 the Schrödinger equation will be solved by the function 
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So that fort he classification act holds 
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To proceed in our analysis of ),( tqK

r
Ψ , we remember that the following equation holds 
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which can be regarded as a complex potential of the form 
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complex potential and the expression (Ep+Up)t describes the quantized equi-potential-lines of the 
complex potential )),(( tqK
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ΨΩ  [3]. The expression  
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describes an information particle wave-front for the eigenvalue Ep + Up (with the energy Ep + Up), 
which emanates out of the source 'neuron' into the neighborhood of the neuron and ‘induces’ the 
classification potential Ep of RNET. 
Coming back to CWA and WHU-structures we now understand, that we can use the quantum 
mechanical principles to describe both: The overall activity pattern described by CWA can be 
understood as superposition of the wave functions ),( 0ttqn =Ψ

r  at a given time t0. Therefore it’s the 
solution of the time-independent Schrödinger equation, whereas the WHU-structures describe the 
dynamical behaviour of )0,(, ttqnK =Ψ

r , resp. ),(, tqnSK
r

+Ψ  the solution of the time-dependent 
Schrödinger equation. It is important to mention that the ),( tqn

r
Ψ are guiding fields and therefore 

are not observable. Only its square is observable as it corresponds to the probability of a local value 
of the activity. Also it must be pointed out, that we are dealing with a quantum mechanical model 
on a grid, what gives advices to the final form of ),( tqn

r
Ψ , Ep and Up.    
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Final question is: What are the benefits of such a theory? 
 
Final answer is: it’s a bridge between the theory of the simulated neural nets to neurology 
and cybernetics, as in the context for the description of the biological neural nets of 
Helmuth Benesch [1] carrier-activity pattern-signification (which means that the momentary 
material state of the brain chooses an dedicated activity pattern which represents an dedicated (self 
aware) signification) it describes the activity pattern level. I am sure if we will understand this level 
in the same way as we understood the carrier level, defined by the architecture of our simulated 
SOMs, we can get the chance to understand (and therefore will be able to simulate) the 
signification level.   
 
5   Conclusions 
In the context carrier-activity pattern-meaning a quantization model of neural nets can be derived 
that describes a neural classifier as an n-particle-system with a well-defined potential behaviour 
and quantized energy rates. The classification-act as well as the change of the net under 
conditioning can be interpreted by the model as the disturbance of the equilibrium state between a 
classification potential Ep and a conditioning potential Up. So every neural net can be regarded as a 
dynamical system, where the quantization parameter h rules the classification behaviour of the 
net. Similar to the theory of brain activation states the storing and the evaluation of information by 
dry-neural nets can now be understood as two kinds of one activation principle, which is ruled by 
the equilibrium state of the potentials of the degrees of freedoms of the net. The change of these 
system-variables can be described in the classical image by the Hamilton-Jacobi equations. On the 
other hand these changes can be described in the quantum mechanical image of neural nets by the 
Schrödinger equation too, where the same potential structure as in the classical phase-space-image 
can be observed. According to this theory we can understand a classifying neuron as a source 
emitting classification waves in the context of a new model of quantum neurodynamics. 
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