
 
 

FAST VECTOR QUANTIZATION WITH TOPOLOGY LEARNING 
 

Marcos M. Campos 
Oracle 

Data Mining Technologies 
Burlington, USA 

marcos.m.campos@oracle.com 
 
 
 

Abstract – A new vector quantization algorithm is introduced that is capable of learning the 
topology of the input distribution. The algorithm uses a tree-structured vector quantizer 
combined with topology learning to achieve fast performance and high accuracy. The 
approach can be applied to improve the performance of different types of tree-structured 
vector quantizers. This is illustrated with results for k-d trees and TSVQ on two high-
dimensional datasets. The proposed method also allows the construction of topology-
preserving graphs with one node per input row. The algorithm can be used for vector 
quantization, clustering, indexing, and link analysis. 
 
Key words – vector quantization, topology learning, constructive self-organizing maps, 
clustering, indexing, approximate nearest-neighbor search, unsupervised learning 
 
 
1   Introduction 
 
The problem of topology learning can be defined as: given some high-dimensional data 
distribution, find a topological structure that closely captures the topology of the data 
distribution [10]. This problem is closely related to the problem of learning a graph that 
captures the topological relationships in the data. The goal in topology learning contrasts with 
that of methods such as Self-Organizing Map (SOM) [13], Growing Cell Structure [9], 
Growing Hierarchical Self-Organizing Map [7], and ISOMAP [16] where the topology of the 
output space is fixed beforehand. These other methods are mainly concerned with 
dimensionality reduction. The mappings from the original space to the new space produced by 
projection methods frequently have topological defects. That is, neighboring points in input 
spaces may be mapped to far away points in the output or transformed space. Projection 
methods, however, are especially useful for representing multidimensional data in a form that 
can be visually inspected. 
Learning a topological representation (graph) of a dataset can be used for vector quantization, 
clustering, link analysis, and indexing for nearest-neighbor and approximate nearest-neighbor 
searches. Several algorithms have been proposed for learning general topologies. These can be 
broadly classified into static (e.g., Neural Gas (NG) [15], and Optimally Topology Preserving 
Maps (OTPMS) [3]) and constructive architectures (e.g., Growing Neural Gas (GNG) [10], and 
SAM-SOM [6]). These algorithms can be seen as attempts to overcome the limitations in the 
SOM algorithm, including: fixed pre-defined output space topology (SOM uses a regular grid), 
poor scalability for large topologies, slow learning, and hard to tune parameters. All these 



WSOM 2005, Paris 

methods create topological structures that are more flexible than SOM and thus better capture 
the topological relationships in the input data distribution. Constructive approaches speed up 
learning by leveraging hierarchical structures and growing the structure on demand. While 
most constructive methods use specialized data structures for speeding up learning, SAM-SOM 
proposes a different approach. It takes advantage of off-the-shelve hierarchical indexing 
methods to scale to large datasets and number of dimensions. This innovative proposal 
eliminates the need to develop specialized data structures for speeding up the search for the 
best matching unit (BMU), a key operation in topology learning algorithms. 
Topology-learning algorithms usually attempt to learn the topology online. As a result, these 
algorithms require slow adaptation to the data. With few exceptions (e.g., GNG and SAM-
SOM), online learning algorithms use multiple decaying parameters, which lead to relatively 
slow training. SAM-SOM is the only algorithm that attempts to learn a topological structure 
with a node for each input data vector. The algorithm use simple rules for creating and pruning 
connections. It is not clear, however, that these simple rules can approximate well the topology 
of input data distributions with uneven density and different dimensionalities in different areas 
of the input space. 
Vector quantization is a lossy compression technique that uses a codebook for encoding and 
decoding data. Vector quantization techniques are aimed at creating small codebooks capable 
of encoding and decoding data with the smallest possible difference between original and 
reconstructed data. Vector quantization can also be seen as a special case of clustering. As in 
clustering, many data records are mapped to a single codevector or cluster. Some applications 
of vector quantization include speech and image compression. 
Vector quantizers for high dimensional vector spaces need a large codebook to achieve a small 
error rate. The Tree-Structured Vector Quantizer (TSVQ) [11] is a popular technique that 
scales well for large datasets and codebook sizes. Different versions of k-d trees have also been 
proposed for fast vector quantization [1]. k-d trees produce encoders with smaller memory 
footprint and faster encoding than TSVQ but, in general, they require larger codebooks for 
achieving the same level of compression of TSVQ. 
As the size of the tree (codebook) grows the ability of approaches such as TSVQ and k-d trees 
to return the actual nearest neighbor to a input vector decreases. That is, the closest codevector 
(leaf centroid) to a given input may not be the one where the input is mapped to by the tree. 
The problem becomes more accentuated in axis-parallel approaches like k-d tree, where the 
partition imposed by the tree at each point is not well aligned with the data distribution 
principal directions. In general, tree-structured approaches trade speed for higher quantization 
error for a fixed codebook size when compared with full search approaches such as the LBG 
algorithm [11]. Some approaches have tried to minimize the impact of the error in the tree 
assignments by searching multiple paths at the same time [2, 4, 5] or by exploring a learned 
topological structure to search near-nodes for a better match [1, 7, 14]. Arya and Mount [1] 
have shown that the latter requires significantly less computation than the standard k-d tree 
approach for achieving the same level of error. Unfortunately, for a dataset with N input 
vectors, the RNG* algorithm used in [1] scales with O(N2), making it unsuitable for large 
datasets. 
This paper proposes a new algorithm called a vector approximation graph (VA-graph) that 
leverages a tree based vector quantizer to quickly learn the topological structure of the data. It 
then uses the learned topology to enhance the performance of the vector quantizer. VA-graph 
can also learn graphs with as many nodes as the number of input vectors. Due to space 
constraints, the algorithm is presented in a batch version only. The paper is divided in 5 
sections. Section 2 presents the tree construction step in VA-graph. Section 3 describes the 



Fast Vector Quantization with Topology Learning 

topology learning capabilities. Section 4 reports the results for vector quantization 
experiments. Section 5 presents the conclusions and directions for future work. 
 
2   Building the Tree 
 
VA-graph combines a tree-structured vector quantizer with a fast topology-learning algorithm 
that relies on the tree-structured quantizer for its speed and scalability. The vector quantizer 
leverages the learned topology of the input data to achieve improved accuracy. The algorithm 
has three main pieces: tree construction, topology learning, and search or encoding. This 
section introduces the basic data partition scheme used in VA-graph for constructing the tree. 
 

 
Figure 1: Tree building steps. 

The algorithm builds a tree recursively as described in Figure 1. The algorithm is initialized 
with a single root node. The centroid of the root node is set to the mean of the data and the 
number of leaves (k0) is set to 1. If the number of leaves is smaller than desired codebook size 
(k) then the eligible leaf node with the largest cost measure value is selected for splitting. 
Eligible leaf nodes are those with at least n data vectors assigned to them. If no leaf node is 
eligible for splitting the algorithm terminates. Some common cost measures are: the mean 
quantization error associated with the node and the number of input vectors assigned to the 
node. The experiments in this paper used the mean quantization error. 
The leaf splitting step varies according to the type of vector quantizer implemented. TSVQ   
uses a 2-means approach for computing the centroids of the two child nodes and for assigning 
data to the child nodes. A k-d tree, on the other hand, uses axis parallel splits. In the k-d tree 
implemented here, the mean value of the node’s component with the largest variance is used to 
split the node. After a leaf is split, k0 is incremented by one. 
The above tree building procedure is O(mNlog2k), where N is the number of input vectors, m is 
the number of dimensions in an input vector, and k is the maximum or desired codebook size 
(number of leaves in the tree). 
 
3   Learning the Topology 
 
The topological structure of the input data distribution can be learned as a post-processing step 
to the tree building stage. The method proposed here can be seen as a hierarchical extension of 
OTPMS [3]. The OTPMS algorithm works as follows: Given a codebook of size k, constructed 
by a vector quantizer, for each input vector find the two nearest codevectors to the input and 
link them. OTPMS is optimum with respect to some of the most commonly used measures of 
topological quality [3]. However, it requires O(Nkm) computations and does not scale well for 
large codebooks. If k ~ N it requires O(N2m) processing. In order to mitigate this, it is proposed 
here the use of a hierarchical vector quantizer to help speed up the computation of the 2-NN 



WSOM 2005, Paris 

problem, that is, finding the two nearest codewords for each input vector. Although there are 
many different and efficient approaches to speed up nearest neighbor queries [1], for the 
experiments in this paper a simple strategy was used: For each row go down the tree using at 
most p paths and then connect the two leaves closest to the input vector. This procedure is 
O(Nmplog2k). For k ~ N it becomes O(Nmplog2N). A value of p less than 10 seems to work 
well for reasonably large codebook sizes. In practice, p equal 4 or 5 produced good results for 
codebook sizes with a couple of thousand codevectors. 
Applications such as link analysis and nearest neighbor queries may require the creation of 
topological structures where k ~ N. For these cases, there are not enough data per leaf node for 
OTPMS to capture the structure of the manifold containing the input vectors. This problem is 
shared by most topology learning algorithms. In order to address this we propose a strategy 
based on the following ideas: generate random data constrained to small volumes of the input 
space following the local shape of the manifold containing the data, and use the topology at 
higher layers of the tree as a guide for the topology at lower layers. The random sampling is 
used to learn local relationships in the spirit of OTPMS. If the sample is constrained to the 
ranges in the centroids of the nodes in the subtree of a given baseline graph node, it is expected 
that the sampling will be contained on a hyper-rectangle with dimensions adapted to the local 
shape of the manifold containing the data. The use of the topological connections at the higher 
layers of the tree as guides to the connectivity at lower levels can be seen as a smoothing or 
regularizing effect that compensates for the small sample size and help learn the overall 
structure. The following steps are proposed for extending the algorithm to cases where k ~ N:  
 

1. Create baseline graph: Identify a level of quantization in the tree structure quantizer 
for which the nodes have enough support to capture well the topology of the data. 
This can be accomplished by selecting all nodes in the tree where Cj < n and Cd(j) ≥ 
n, where Cj is the number of inputs assigned to node j, d(j) is one of the indices of 
node j two children, and n is a user defined parameter. Apply OTPMS to this set of 
nodes to construct a baseline graph. Utilize the tree structure for speeding up the 2-
NN search. In this paper, the multi-path approach is used in all the experiments. 
This is a O(Nmplog2kb) operation, where kb is the number of nodes in the baseline 
graph. This step is quite robust to the value used for the parameter n. In practice n 
as low as 10 produced good results. 

2. Link subtree: For each j node in the baseline graph generate r random vectors. The 
components of the random vectors should be between the minimum and the 
maximum values found for these components in the leaf nodes in the subtree rooted 
at the respective baseline graph node. Combine the r random vectors with the 
centroid values for the leaf nodes in the subtree.  For each row in the combined set 
find the 2-NN leaf nodes s1 and s2 in the subtree and link them. Assign a weight of 
1/dist(s1, s2) to the link, where dist(a, b) is a distance function (usually the 
Euclidean metric can be used).  This is a O(kbmprlog2n) operation. For r ~ n and kb 
~ N/n then it becomes a O(Nmplog2n) operation.  

3. Create long-range links: For each pair of nodes (u1, u2) connected by a link in the 
baseline graph and for each leaf s1 in the subtree rooted in u1, find the closest leaf 
node s2 in the subtree rooted in u2. If 1/dist(s1, s2) is greater than the smallest weight 
amongst the links containing either s1 or s2 then create a link between s1 and s2. If s2 
was already linked to a node in the subtree rooted at u1 then keep the link with the 
smallest weight. This is a O(0.5kbnmpllog2n) operation, where l is the average 
number of links for nodes in the baseline graph. For kb ~ N/n it becomes 
O(0.5Nmpllog2n) 



Fast Vector Quantization with Topology Learning 

The approach proposed above takes three parameters: p, n, and r. In practice, setting r = n 
works well and eliminates the need of a free parameter. 
The ability of VA-graph to learn the topology of the input distribution using the algorithm 
described above is illustrated in Figures 2 and 3. k-d tree was the vector quantizer used in these 
examples. Figure 2 shows, for k << N, how the algorithm can learn a topological structure even 
when the dimensionality of the data distribution varies in different areas of the input space. 
The quality of the graph learned by VA-graph was assessed using Kiviluoto’s topographic 
error [12]: 
 

 

! 

" =
1

N
u(x

i
)

i=1

N

# , (1) 

 
where 

! 

u(x
i
) =1  if the first and second best matching units (codevectors) are not adjacent, 

otherwise zero. Both graphs in Figure 2 had almost no topographic errors. Figure 3 shows that 
VA-graph can construct a reasonable graph containing one leaf node per input vector (k = N) 
for a relatively sparse sample. 

 
Figure 2: Left: VA-graph adapts to an input distribution with different dimensionalities in different areas of the input 
space, ε = 0.004. Right: Final topology configuration for another 3D dimensional distribution, ε = 0.007. 

 
 

  
Fig. 3. Building a graph with one node per input vector. Left: Input distribution with 500 vectors and the baseline graph 
obtained with n = 15. Right: Final graph with one leaf node per input. The thick lines represent the links produced within 
each major group by the random rows created using the proposed method (r = 10). The thin lines are the links created 
across groups using the links in the baseline graph as guides. 

The method described above can be easily extended to learn a hierarchical topological 
structure. By constraining the links to certain levels of the tree, it is possible to obtain a coarse 
to fine description of the structure of the data distribution. The weights on the links learned 
with the above approach can also be used for pruning the graph and for data exploration. 



WSOM 2005, Paris 

Once a topology has been learned it can be used to enhance the search for the BMU in the tree 
vector quantizer. The search process on the neighborhood graph follows the approach in [1]. 
Search is accomplished in two steps. First, the tree is traversed (single path) until a leaf is 
reached. Next, the nearest neighbors in the graph to the leaf node are visited to determined if a 
better codebook can be found. The best matching node is selected for further expansion, in 
which case its nearest neighbors in the graph are visited. The search through the graph is halted 
after a certain number of nodes have been visited or a given number of expansions s has taken 
place. The second stopping criterion is the one used in the experiment section of the paper. The 
processing for this approach is O(Nmlog2N + Nms) for TSVQ and O(Nlog2N + Nms) for k-d 
tree. 
 
4   Experiments 
 
This section illustrates the performance of VA-graph on two vector quantization experiments. 
The experiments used the Letters and the Corel Image Features datasets from the UCI Machine 
Learning Archive1 and UCI KDD Archive2 respectively. For all the results below, the 
following labels were used: k-d tree represents a tree search for a k-d tree quantizer, TSVQ 
describes a tree search using a TSVQ quantizer, FS indicates a full search over the codebook 
produced by either tree quantizer (k-d tree or TSVQ), VA-g represents results for a topology 
learned using the multi-path algorithm described in Section 3 (p = 4, n = 10, r = 0, and s = 1), 
VA-gO indicates results using a topology learned with OTPMS. The full search case (FS) is 
the smallest quantization error possible for the codebook created by the vector quantizers in the 
experiments. The topology for the VA-gO results is the optimal topology that can be learned for a 
particular experiment given the codebook produced by the tree quantizer used in the experiment. 
The Letters dataset has 20,986 rows and 17 attributes.  Figure 4 shows the distortion (SSE, 
Sum of Squared Errors) for two sets of studies for different codebook sizes. In the first study, a 
k-d tree was used as the vector quantizer. In the second, TSVQ was used as the vector 
quantizer. The graphs clearly illustrate the benefit of using VA-graph with the topological 
information. In the experiments, the results for the approximated topology using the simple 
multi-path method are very close to those for the optimal topology. In addition, the 
performance of the quantizers leveraging the topological structure approaches that of the full 
search for both the k-d tree and TSVQ even for s = 1. Finally, although not reported in the 
graphs, the average number of extra nodes searched by VA-graph is at most 13 across all 
codebook sizes and vector quantizers in this set of experiments. To place this in perspective, 
for a codebook size of 256, VA-graph would search on average 13 + log2256 = 21 nodes versus 
8 nodes for the basic vector quantizers and 256 for the full search case. 
For the second experiment a subset with 20,000 rows and 89 attributes of the Corel dataset was 
used. The results, illustrated in Figure 5, follow the same trends seen for the Letters dataset. 
Again, the average number of extra nodes searched by VA-graph is at most 13 across all 
codebook sizes and vector quantizers used with the Corel dataset. Furthermore, for a codebook 
size of 1024, 97.8% (k-d tree case) and 99.7% (TSVQ case) of the nearest neighbor 
codevectors were within four hops from the leaf selected by the basic quantizers. For smaller 
codebook sizes, a higher percentage of the nearest neighbor codevectors were within fewer 
hops from the initial leaf node.  
 

                                                
1 http://www.ics.uci.edu/~mlearn/MLRepository.html 
2 http://kdd.ics.uci.edu/ 



Fast Vector Quantization with Topology Learning 

 
Figure 4: Sum of Squared Errors (SSE) as a function of codebook size for the Letters dataset. Left chart: k-d tree was 
used as the vector quantizer. Right chart: TSVQ was used as the vector quantizer. 

 

 
Figure 5: Sum of Squared Errors (SSE) as a function of codebook size for the Corel dataset. Left chart: k-d tree was used 
as the vector quantizer. Right chart: TSVQ was used as the vector quantizer. 

It should be noted that it is possible to improve the performance of VA-graph by expanding the 
search in the graph to include more nodes (s > 1). 
 
5   Conclusions 
 
This paper introduced VA-graph, a new vector quantization algorithm that is capable of learning 
the topology of the input distribution. The approach presented here can be easily adapted for 
learning topologies using other hierarchical structures. The random sampling method discussed in 
Section 3 can be used to allow other topology learning algorithms to learn graphs with one node 
per input row. 
VA-graph is also a promising algorithm for use in an indexing system. Scalar and vector 
quantization approaches have gained attention during the last years as an approach for indexing 
high dimensional vector spaces for exact and approximate similarity queries [8]. 



WSOM 2005, Paris 

The current work can be expanded in a couple of directions, including: an online version of the 
algorithm, exploration of indexing applications, use of alternative nearest neighbor searching 
strategies in the tree [1, 2] in place of the multi-path approach, and applications to link 
analysis, data projection, and clustering. 
 
References 
 
1. S. Arya and D. M. Mount (1993), Algorithms for fast vector quantization. In J. A. Storer and 

M. Cohn, editors, Proceedings of DCC 93: Data Compression Conference, p. 381-390, IEEE 
Press. 

2. S. Bader, F. Maire, and F. Wathne (2004), Fast indexing of codebook vectors using dynamic 
binary search trees with fat decision hyperplanes, Studies in Fuzziness and Soft Computing, 
vol. 152, Springer. 

3. J. Bruske and G. Sommer (1997), Topology representing networks for intrinsic dimensionality 
estimation, ICANN, p. 595-600. 

4. M. Campos and G. Carpenter (2001), S-TREE: Self-organizing trees for data clustering and 
online vector quantization, Neural Networks, vol. 14, p. 505-525. 

5. C-C. Chang and T. S. Chen (1997), New trees-structured vector quantization with closest-
coupled multipath searching method, Optical Engineering, vol. 36, p. 1713-1720. 

6. E. Cuadros-Vargas and R. F. Romero (2002), A SAM-SOM family: Incorporating spatial 
access methods into constructive self-organizing maps. In Proceedings IJCNN’02, Intl. Joint 
Conference on Neural Networks, p.1172-1177, IEEE Press. 

7. M. Dittenbach, A. Rauber, and D. Merkl (2001), Recent advances with the growing 
hierarchical self-organizing map. In N. Allinson, H. Yin, L Allinson, J. Slack, editors, 
Advances in Self-Organizing Maps: Proceedings of the 3rd Workshop on Self-Organizing 
Maps, Lincoln, England, Springer. 

8. H. Ferhatosmanoglu and E. Tuncel (2000), Vector approximation based indexing for non-
uniform high dimensional data sets. In Proceedings of the Ninth International Conference on 
Information and Knowledge Management, Virginia, United States, p. 202-209. 

9. B. Fritzke (1994), Growing cell structures – A self-organizing network for unsupervised and 
supervised learning, Neural Networks, vol. 7, p.1441-1460. 

10. B. Fritzke (1995), A growing neural gas network learns topologies. In G. Tesauro, D. S. 
Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, p. 
625-632, MIT Press, Cambridge MA. 

11. A. Gersho and R. Gray (1992), Vector Quantization and Signal Processing, Kluwer Academic 
Publisher. 

12. K. Kiviluoto (1996), Topology preservation in self-organizing maps. In Proceedings of 
ICNN’96, International Conference on Neural Networks, vol. 1, p. 294-299, IEEE Neural 
Networks Council. 

13. T. Kohonen (1982), Self-organized formation of topologically correct feature maps, Biological 
Cybernetics, vol. 43, p. 59-69. 

14. P. Koikkalainen (1994), Progress with the tree-structured self-organizing map. In Proceedings 
ECAI’94, 11th European Conference on Artificial Intelligence, p. 211-215. 

15. T. Martinez and K. Schulten (1993), A “neural gas” network learns topologies. In T. Kohonen, 
K. Makisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, vol. 7(3), p. 507-
522. 

16. J. Tenenbaum, V. de Silva, and J. Langford (2000), A global geometric framework for 
nonlinear dimensionality reduction, Science, vol. 22, p. 2319-2323. 


