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Abstract - The existence of an intra-day seasonality component within financial market vari-
ables (volatility, volume, activity,. .. ), has been highlighted in many previous works. To adjust
raw data from their cyclical component, many studies start by implementing the intra-daily av-
erage observations model (IAOM) and/or some smoothing techniques (e.g. the kernel method)
in order to remove the day of the week effect. When seasonality involves only a deterministic
component, IAOM method succeed in estimating periodicity almost without estimation error.
However, when seasonality contains both deterministic and stochastic components (e.g. closed
days), we show that either the IAOM or the kernel method fail to capture it. We introduce
the use of the self-organizing maps (SOM) as a solution. SOM are based on neural network
learning and nonlinear projections. Their flexibility allows capturing seasonality even in the
presence of stochastic cycles.
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1 Introduction

Evidences of intra-daily seasonality in financial market behaviors has been highlighted in
many prior studies. Some recent references include [7], [1], [11], [5], [2] and [4]. These works
illustrate the existence of seasonality in many microstructure variables (e.g. FOREX volatility
and quoting activity). Two categories of methods are most often used in order to remove
this seasonality. Some studies like [7], [1], [5] and [4] adopt a linear projection technique.
They regress variables (affected by the seasonal component) on a set of dummies variables
(or flexible Fourier form) in order to capture intra-day cycles. Other authors adjust raw data
from seasonality using a direct correction factor, obtained by intra-daily average ([6], [8], [11],
and [2] ) or a smoothing kernel ([9], [3], and [13]).

This work builds on the previous literature to explore the limits of the classical approaches
and to introduce a solution in the case of stochastic cycles. We show that the more the
raw data involves a deterministic seasonality, the more the classical methods, particularly
the intra-daily average observations model, succeed in estimating the cycles. However, in
the presence of stochastic cycles (or the combination of deterministic and stochastic cycles),
such as the ones generated by closed days (among others), classical methods reveal their
limits. We introduce in this a method based on the self-organizing maps algorithm ([10]).
The self-organizing maps (SOM) allows capturing both deterministic and stochastic cyclical
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components and purging endogenous variables from the seasonal component.

Our evidences are based on a Monte Carlo simulations. Our Monte Carlo simulations adopt
a five-step framework. We begin by generating an auto-regressive process. We then simulate
either only a deterministic seasonality, or both deterministic and stochastic cycles which we
add to the auto-regressive variable. Next, we partition the generated variable into block
of observations, each one representing a day of the week. After that we deseasonalize the
endogenous variable, using the three methods cited above. We finally re-estimate the process
coefficients on the deseasonalized data series. Better is deseasonalization, closer should be
the estimated coefficient to the simulated one, and lower should be the root mean square
error (RMSE). This allows use comparing the performance of the above cited methods in a
controlled setup.

This paper is divided in five sections. In Section 2 we detail our deseasonalization methods.
We present the Monte Carlo simulation in Section 3 and we show the results in Section 4.
We finally conclude.

2 Deseasonalization Methods

2.1 The Self-Organizing Maps Model (SOM)

The self-organizing maps (SOM) introduced by [10] can be considered as a method of data
analysis which allows, through a (discrete) projection, to reduce the dimension of the data
space ( as principle component analysis methods do). Simultaneously it allows, through vector
quantization, to summarize the data projected in specific mean profiles. The projection step
is carried out on a discrete data space.!

2.2 The Intra-daily Average Observations Model (IAOM)

To estimate seasonality, we compute the intra-daily average observations at time nj of day
k (called muy, ). We divide each day into Q intervals of time. We assume for simplicity that
we have exactly S weeks of data. For each interval endpoint per day of the week over the
S week period, we have one observation for the random variable, Y. We thus compute in
principle Q values mu,, for each day of the week, that makes a total of W (5 x @) values
over a week. Formally,

S
1
MUy, = g Z Yf(s,k:,nk)7 (1)
s=1
where
k—1
Fls kyng) =W (s — 1)+ > Nj + ny, (2)
j=1

S = 1,...,5. k':l,...,5. N1 :N2:N3:N4:N5 :Q ny = 1,...,@. ng2,Nn3, N4 and ns
likewise.

To adjust the different variables for seasonality, we implement the same methodology used
for the SOM adjustment. We just divide/withdraw them at the endpoint of each five
minute interval by/from the corresponding value of the intra-daily average observation. That

'We refer the reader to [10] for a detailed presentation of SOM.
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means, for example, that all quoting activity at 12h on Thursday in the sample are with-
drawed/divided by the same value (the average quoting activity at 12h on Thursday).

2.3 The Smoothing Method

It consists in smoothing the raw data using the Nadaraya-Watson kernel estimator and then
adjusting each raw observation by the correspondent value on the smooth curve. The adjust-
ment is done as for the SOM and ITAOM methods.

The Nadaraya- Watson kernel estimator Y; of Y(t) is:

o Ejrzl Kp(t _tj)Y;t
t = T
Zj:l Kn(t - tj)

t is the vector of time, T corresponds to the number of observations, and h is the bandwidth
parameter. Choosing the appropriate bandwidth is an important aspect of any local-averaging
technique. In our case we select a Gaussian kernel with a bandwidth, h, computed by [12]:

3)

12
Kp(z) = h127re_2h2 (4)
(Y s
h = (g) o 1715, (5)

where oy, is the standard deviations for the observations.

3 Monte Carlo Simulation

3.1 Simulation Procedure

In order to compare the three seasonality identification methods (IAOM, SOM, NW-kernel)
we implement a five-step simulation procedure.
1) We start by generating a P-lag autoregressive process, y;, (AR(P), P =1,5):

P
v = B, + e, (6)
p=1

where ( is equal to 0.95 if P = 1, and if P = 5, then 81 = 0.5, §o = 0.09, 83 = 0.08,
B4 = 0.07, and B5 = 0.06. ¢ is distributed as a standard Normal.

2) We partition y; by block of Q observations each one representing a day of the week.

3) We simulate a deterministic seasonality ngt and we add it to the above AR(P) process,
such that:

Yei = Yii + Ste'. (7)

Let yz ;, represent one such block, where ¢ is an index corresponding respectively to the open

days of the week (i = 1,...,5). Stdjt is generated by the following procedure: we divide the
block of observations, corresponding to each day of the week, into three time frame (let say
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the morning, the noon, and the afternoon). Then, we add a defined constant to the AR(P)
process depending on the specific time frame in which the observation is located. One set of
constants is chosen for each day of the week, since we generate a deterministic seasonality. In
such a way, y; becomes an autoregressive variable which involves a deterministic seasonality.
To simulate an AR(P) process which contains stochastic seasonality added to the determin-
istic one, we go through the following procedure:

e We generate an AR(P) process:
P
5= Bpai,te (8)
p=1

e We add to this process a deterministic and stochastic seasonality:

* det sto
2t = Zt,i + St,i + St,z' y (9)

Sg;?t is generated as described above, and Si§0 is the stochastic seasonality. The difference
between the latter seasonality and the former one consists on the manner of which we add
constants to the time frame in the weekdays. In the stochastic seasonality case, days are
selected randomly to be subject for added seasonality. Moreover, seasonality changes from a
week to another.

4) The fourth step consists in estimating and removing seasonality from the two simulated
processes (y; and z;) using respectively the IAOM, the NW-kernel and the SOM methods.
The deseasonalization methodology consists in using a linear substraction of the estimated
seasonality, fet and ¢5'° respectively from the analysed variables y; and z;, such that:

i =y — o, (10)

/

2, = 2z — O (11)

5) Finally, we estimate both AR(P) processes, based respectively on the deseasonalized vari-
ables, using ordinary least square estimation:

P
Yy = Z Bpli—p + € (12)
p=1
P
Zt == Z ’ypzt,p + Vt’ (13)
p=1

The all procedure is iterated 1000 times. To assess the performance in terms of seasonality
adjustment of each of the three methods, we compute the root mean square error (RMSE) of
the estimated coefficients ﬁ]; and ”y]; relative to the initially simulated one, 3,. The closer the
estimated coefficients to 3,, the lower is the RMSE and better is the seasonality adjustment
approach. It is worth pointing out that the SOM algorithm is initialized with the TAOM
outputs (which in practice, seems to be a judicious choice).
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4 Results

Estimation results for the Monte Carlo simulation are presented in Tables 1 and 2. The
latter table displays the estimation results for AR(5) process, and the former one presents
those of AR(1). The panels A in both tables display the mean, the standard deviation, and
the RMSE corresponding to 1000 estimation of the autoregressive coefficient for equation
(12) in presence of deterministic seasonality. The panels B illustrates the same results for
the stochastic seasonality (equation (13)). The variables, in this case, are deseasonalized
from their deterministic and stochastic seasonality. The RMSE in both panels characterize
the estimation error generated by the added seasonality. It is the root mean square differ-
ence between the simulated coefficients and the recovered ones after adding, estimating and
removing seasonality, G and fy/.

Table 1: Estimation results for the AR(1) processes with seasonality:

I ! ! !
y}f = ﬁ/y/t_l + 657
Zp =7 %1tV

Non-Deseas.

Deseas. TAOM

Deseas. SOM(1,5)

Deseas. Kernel

Panel A (deterministic seasonality)
ﬁ, 0.9596 0.9499 0.9433 0.9510
o 0.10% 0.07% 0.12% 0.12%
RMSE 0.96% 0.09% 0.67% 0.14%
Panel B (stochastic seasonality)
~ 0.9702 0.9672 0.9464 0.9640
o 0.22% 0.30% 0.12% 0.20%
RMSE 2.02% 1.72% 0.36% 1.40%

Starting with deterministic seasonality results, the estimated coefficients for the non-deseasonalized

autoregressive parameters corresponding to equation (12) and (13) (see the second column of
Tables 1 and 2) shows a higher error level in Panel B results than in panel A. The more there
is seasonality into the process, the more important is the error in the estimated coefficients.
This is the reason why previous studies try to get rid from the cyclical component involved
in their microstructure variables.

The IAOM deseasonalization displays interesting results in panel A. The estimated coefficients
is very close to simulated ones with an insignificant error equal to 0.01% for AR(1) and around
0.35% for the different coefficients of the AR(5). We conclude that the TAOM method succeeds
in capturing almost the whole deterministic seasonality component. The ITAOM method can
therefore be recommended as an effective tool for seasonality adjustment when the cyclical
component is strictly deterministic. This means that the time series should not include gaps
due to missing values (due, e.g., to closed days, data recording problems, ...). Panel B
presents very different results. In the presence of stochastic cycles, the TAOM method leads
to a significant estimation error level. The corresponding RMSE is much higher than the
error obtained by estimating the model with deterministic seasonality. When the seasonality
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Table 2: Estimation results for the AR(5) processes with seasonality:

! o 5 ! ! !
(DY —1 PpYi—p T+ €
! g ! I li
z = szl VpZt—p + V-

Non-Deseas.

Deseas. TAOM

Deseas. SOM(1,5)

Deseas. Kernel

Panel A (deterministic seasonality)
B, 0.595 0.500 0.501 0.590
o 0.35% 0.36% 0.52% 0.35%
RMSE 9.47% 0.29% 0.36% 9.00%
B, 0.114 0.901 0.0904 0.114
o 0.42% 0.40% 0.44% 0.38%
RMSE 2.42% 0.33% 0.35% 2.37%
By 0.091 0.079 0.0802 0.088
o 0.42% 0.40% 0.43% 0.36%
RMSE 1.09% 0.33% 0.34% 0.84%
8, 0.073 0.070 0.0702 0.072
o 0.44% 0.42% 0.44% 0.40%
RMSE 0.46% 0.34% 0.35% 0.38%
Bs 0.064 0.0.059 0.0601 0.059
o 0.38% 0.39% 0.42% 0.38%
RMSE 0.43% 0.31% 0.33% 0.32%
Panel B (stochastic seasonality)
" 0.687 0.653 0.516 0.685
o 2.13% 2.52% 0.61% 2.31%
RMSE 18.66% 15.26% 1.63% 18.49%
Y 0.114 0.116 0.0904 0.114
o 0.47% 0.45% 0.47% 0.52%
RMSE 2.35% 2.55% 0.72% 2.37%
Vs 0.077 0.084 0.085 0.077
o 0.61% 0.61% 0.45% 0.59%
RMSE 0.52% 0.58% 0.59% 0.52%
V4 0.054 0.062 0.075 0.054
o 0.67% 0.73% 0.45% 0.70%
RMSE 1.60% 0.89% 0.54% 1.57%
Vs 0.036 0.047 0.067 0.037
o 0.72% 0.87% 0.42% 0.80%
RMSE 2.41% 1.36% 0.71% 2.34%
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involves both deterministic and stochastic elements, the IAOM does in fact not capture the
whole cyclical component of the process. When there are good reasons to think that the
seasonality could display some stochastic behavior, the TAOM approach should no be used.
The SOM method seems to be far more robust to the presence of stochastic cycles. The
panel B of Tables 1 and 2 exhibits, in the forth row, respectively the estimation result
for the seasonality adjusted AR(1) and AR(5) processes. The corresponding RMSE is low
compared to the TAOM case. Contrary to the TAOM method, SOM(1,5) succeeds in capturing
seasonality involving both deterministic and stochastic cycles. Results displayed by panel A,
for both tables, show that SOM(1,5) is however less efficient than the IAOM method when
seasonality involves only deterministic cycles. In such a case, the estimation error generated
by SOM(1,5) is much higher than the one generated by IAOM method. The choice between
the IAOM and SOM depends therefore on the presence of stochastic cycles.

The kernel results displayed in Table 1, Panel A, show that the method captures deterministic
seasonality with a low error level. This finding is consistent with previous research which opt
for the kernel method as a step in their deseasonalization process in particular when their
samples exhibit some deterministic cycles. However, the kernel adjustment is less accurate
than TAOM. Nevertheless, Table 2, Panel A, displays a higher RMSE for the kernel method,
especially for the first three coefficients of the AR(5).

Panel B results, corresponding to Tables 1 and 2, show that the kernel method generates
an estimation error level much higher than the one generated by SOM and TAOM but quite
smaller than non-adjusted data.

These findings are consistent with the intuition. By construction, in the case of deterministic
seasonality, the ITAOM method, built on the computation of the cross sectional means, can
easily capture the seasonality. The TAOM algorithm relies indeed on the law of large numbers:
the deterministic component estimation amounts to an estimation of the hour by hour cycle
expected value by its sample average. The SOM algorithm and kernel methods can as well
capture deterministic cycles but much less efficiently than the TAOM. Nonetheless, in case of
cycle irregularities (as often observed in financial data), using hour by hour sample average
to capture the seasonality becomes problematic. The SOM model goes beyond the limits of
TAOM and the kernel models. It estimates, efficiently, the seasonality which contains both
deterministic and stochastic cycles.

5 Conclusion

This paper focus on three seasonality identification methods: the self-organizing maps algo-
rithm (SOM), the intra-day average observation method (IAOM) and the Nadaraya-Watson
kernel method. The TAOM and the kernel methods have been used previously in the litera-
ture. We introduce the SOM algorithm in order to overcome some of their shortcomings.
We study the ability of each method to capture cycles involving deterministic and stochas-
tic components. We implement a Monte Carlo simulation in which we generate an AR(1)
and AR(5) processes infected by a seasonality involving deterministic and stochastic cycles.
Then, we capture and remove the cycles by implementing the three methods. We estimate,
afterward, the deseasonalized process and we compute and compare the estimation generated
erTors.

The simulation outputs carry out the following results: 1-the TAOM model is much more
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efficient than the kernel and the SOM methods when seasonality contains only deterministic
cycles. 2-When seasonality involves both deterministic and stochastic cycles, SOM model
outperforms the other methods in capturing and identifying seasonality.
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