
Graph-based normalization for non-linear data analysis (I)

Catherine Aaron

SAMOS-MATISSE
Paris France

catherine aaron@hotmail.com

Abstract - In this paper we construct a graph-based normalization algorithm for non-linear
data analysis. The principle of this algorithm is to get, in average, spherical neighborhood with
unit radius. In a �rst paragraph we show why this algorithm can be useful as a preliminary for
some neural algorithms as those that need to compute geodesic distance. Then we present the
algorithm, its stochastic version and some graphical results. Finally, we observe the e�ects of
the algorithm on the reconstruction of geodesic distance by running Dijksrta’s algorithm [1]
and on the performance of Kohonen maps.

Key words - normalization, geodesic distance, graph, SOM

1 Introduction

For non-linear structures, geodesic (or curvilinear) distance is much more relevant than eu-
clidian one.

Figure 1: curvilinear (plain) and Euclidian (dashed) distance for two points on a sinusöıde

Data analysis methods, based on geodesic distance have been built recently (as for instance
ISOMAP [2] or curvilinear distance analysis [3]) and seem to be helpful for non-linear data
analysis.
Normalization impact on geodesic distance computation has been discussed only in [4] and
we will present this work again because we need it for the second part [5]. We will see in the
second part of this paper that the normalization algorithm is also helpful for SOM algorithms.
For theoretical and in�nite sets of points there is no normalization problem for geodesic
distance calculation (see �gure 2).
For �nite and discrete data a normalization problem appears. Calculation of geodesic distance
�rst needs the computation of a neighborhood graphs such as MST (Minimal Spanning Tree)
or K�nearest neighbors which strongly depend on axis scaling (as shown on an example in
�gure 3). Then, to achieve the calculation Dijkstra’s algorithm is computed on the graph.



WSOM 2005, Paris

Figure 2: curvilinear distance on a spiral for different scaling

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

Figure 3: 3− nearest neighbors graph for classically normalized data for Y = sin(ωX), X ∈
{5, 10, ...55, 60}

2 Graph-Based Normalisation

2.1 Principle

Let us �rst observe that when sets are non-linear the use of ”classical” normalization that
studies the global dispersion around a central indicator (usually the barycenter) won’t be
useful. That may come from to the fact that the barycenter may not be a ”good” central
indicator for non-linear structure, and, more ”philosophically” from the fact that for non-
linear sets local indicators may be better than global ones.

To illustrate the lack of interest of ”classical” normalization (division by standard deviation),
for each example the departure of the algorithm will be done on classically normalized data
and we will see that computed graphs are rarely good.

To build an algorithm based on local study, we had the idea to make, in average spherical
neighborhoods with unit radius.



Graph-based normalization for non-linear data analysis (I)

2.2 Proposed Algorithm

In this section we denote by X the set of points (N points in <

d). Notations are

Xi the ith row vector of X (∈ <

d) corresponding to the itheindividual.

Xj the jth column vector of X (∈ <

N ) corresponding to the jthevariable.

We chose a graph structure (MST or k�nearest neighbors) and characterize it by its matrix
GX (GX

i,j = 1 if and only if [Xi, Xj ] is an edge of the graph and 0 otherwise). The graph
de�nition leads us to �nd neighborhoods (the neighborhood of a point Xi is de�ned by all
the points Xj such that GX(Xi, Xj) = 1). To perform the idea presented previously of
making average neighborhoods spherical with unit ray : we apply rotation and re-scaling
on neighborhood to be ”better”. After these transformations distance between points and
same-structured graph changes so we iterate the algorithm.

2.2.1 Exhaustive version

We start with the un-normalized initial data set (in following examples the classically nor-
malized sets to observe that they usually are not good) and iterate :

• Computation of all the ”neighborhood vectors” as every ~y = ~XiXj if GX(i, j) = 1
or GX(j, i) = 1 . We get a data set Y of N ′ vectors with null mean that represents
neighborhoods directions.

• Compute PCA analysis on Y that gives a P isometric matrix.

• Apply X := PX that transforms axis such that the new neighborhood vectors have a
diagonal covariance matrix (as the P matrix is isometric GX = GPX)

• To make the average radius equal to 1, we de�ne the weight wj of the jth axis as follows.

wj =
1

N ′

∑
i6=j,G(i,j)=1

|Y
j
i |

And, �nally, we apply X j = Xj/wj to normalize edge’s size to 1.

So we obtain a transformed data set which has a neighborhood structure that we expect to
be ”better” and iterate transformation on this new data.

We now present some results. For each example we �rst present initial data and graph
(classical normalization), then PCA cumulated inertia, indicator of ”rotation” convergence
during the algorithm, weight of axis during algorithm, and, �nally, graph-based normalized
data and graph)

The �rst examples are sinusöıdal sets with di�erent frequencies.

The second ones are sinusöıdal sets with gaussian perturbation and π/4 rotation. X 2 =
sin(ωX1) + �ε with ε → N(0, 1) and X = QX with Q the π/4 rotation matrix.

We observe quite encouraging results even if, for too big frequencies, we can’t reconstruct
data organisation. This saturation e�ect occurs more quickly when data are rotated.



WSOM 2005, Paris

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

1 2 3 4 5 6 7 8 9 10
0

1

2

−250 −200 −150 −100 −50 0 50 100 150 200 250
−20

0

20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−20

0

20

−300−200−1000100200300

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−40 −30 −20 −10 0 10 20 30 40
−50

0

50

Figure 4: 500 points with X1 = unifrnd(0, 1) and X2 = sin(ωX1) with ω ∈ {50, 80, 100}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−300 −200 −100 0 100 200 300
−50

0

50

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

0

5

0 2 4 6 8 10 12 14 16 18 20
0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−20

0

20

−200−150−100−50050100150200

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

0

5

0 2 4 6 8 10 12 14 16 18 20
0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−50

0

50

−150−100−50050100150

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−40 −30 −20 −10 0 10 20 30 40
−50

0

50

Figure 5: Rotated examples : (1) ω = 50, σ = 0,(2) ω = 50, σ = 0.1, (3) ω = 50, σ = 0.2,(4)
ω = 70, σ = 0

2.2.2 Stochastic Version for the Algorithm

As the running time may be long because of the computation of di�erent graphs at each step
of the algorithm, we propose, here, a stochastic version for huge data sets (in practice for
more than 1000 points).

First, we choose a graph structure (k�nearest neighbors, Minimal spanning tree...) which
will be used in the whole algorithm.

Iterate :

While it <= NbIt

• (1) randomly draw N ′ < N points that form the set X ′



Graph-based normalization for non-linear data analysis (I)

• (2) compute GX′

• (3) compute Y ′ edge vector and run PCA (obtain P ′ isometric)

• (4) apply X := P ′X and Y ′ := P ′Y ′

• (2) ∀j compute w′j on Y ′

• (3) ∀j Xj := Xj/wj

As the edges of the partial data-set (X ′) are bigger than those of the complete one, this
algorithm won’t converge to a weight of 1 for all directions on the complete data set, but to
a graph that has the same weights for all directions.

We present here results for 3 � D sinusöıde with N = 1000, N ′ = 500 and it = 50 with
MST�based normalization and representation of the 8�Nearest Neighbor graph

Figure 6: Results for 3− D sinusöıde

3 Impact on the Geodesic Distance

In this section we want to observe the impact of our normalization on the computation of
geodesic distance. As the theoretical study is in progress we can only give empirical results
based on examples.

Here, we simulated sinusöıdal sets X1 ↪→ U [0, 1] and X2 = sin(ωX1) so that the ”true”
geodesic distance dc(Xi, Xj) only depends on |X1

i � X1

j |.

We randomly draw 100 points.

We used 8�nearest neighbors graph of X for normalization and for geodesic distance compu-
tation. The two examples presented in �gure 7 can be read by row : �rst 8�nearest neighbors
graph and scatter plot of ˆdc(Yi, Yj v.s. |X1

i �X1

j | (for each couple of points) for classical nor-
malization then same �gures for graph-based normalization. The two examples use di�erent
values of ω.

As there are only 100 points (Dijkstra’s algorithm is very slow) we can only test small fre-
quencies but results for geodesic computation are quite promising.



WSOM 2005, Paris

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

−60 −40 −20 0 20 40 60
−25

−20

−15

−10

−5

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

−60 −40 −20 0 20 40 60
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

Figure 7: 8−nearest neighbors graph and scatter plot of ˆdc(Yi, Yj) v.s. |X1

i
− X1

j
| for classical nor-

malization and MST -based normalization 1 ω = 10 and 2 ω = 20

4 Impact on Kohonen Maps

It appears that Kohonen maps are very sensitive to normalization. This is due to the fact
that, at each iteration a random observation is computed. Then its nearest weight vector
(and all its neighbors) are adapted. The problem, here is obviously, which is the ”true”
nearest weight vector ?

To illustrate this (�gure 8) we simulate an initial condition for Kohonen algorithm with initial
weight vector randomly drawn from the data set (big points) and observe the Voronoi’s cells
of two weight vectors if the drawn point is in one of these two cells it attracts one of the two
weight vectors away from the set in the �rst case, inside the set in the second one.

Figure 8: Impact on the normalization on Kohonen algorithm

In fact, we’d observe that Kohonen maps are even much more sensitive to normalization than
graphs. This is illustrated on the following �gure were we present results of Kohonen maps
for initial data and normalized data with a sinusöıde example. Even if MST graphs are
almost good in the classical normalization case, Kohonen algorithm fails. After graph-based
normalization, results are much better.

The graphic is similar to �gure 4 and 5 on which we subplot in dark and plain results of
Kohonen strings (5000 iterations) before and after normalization.

To illustrate the performance of graph normalization, we also present results for 3D sinusöıdes
(only results of SOM algorithm with classical normalization and graph-based one):



Graph-based normalization for non-linear data analysis (I)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

1 2 3 4 5 6 7 8 9 10
0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

1 2 3 4 5 6 7 8 9 10
0

1

2

−100 −80 −60 −40 −20 0 20 40 60 80 100
−20

0

20

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

1 2 3 4 5 6 7 8 9 10
0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

1 2 3 4 5 6 7 8 9 10
0

1

2

−100 −80 −60 −40 −20 0 20 40 60 80 100
−20

0

20

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

1 2 3 4 5 6 7 8 9 10
0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

1 2 3 4 5 6 7 8 9 10
0

1

2

−100 −80 −60 −40 −20 0 20 40 60 80 100
−20

0

20

Figure 9: 200 points with X1 = unifrnd(−1, 1) and X2 = sin(10X1) results of a Kohonen string
after 5000 iterations for 20, 40 and 70 neurons

−1

0

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−40

−20

0

20

40

−100

−50

0

50

100
−15

−10

−5

0

5

10

15

Figure 10: 200 points with X1 = unifrnd(−1, 1) and X2 = sin(2X1) and X3 = unifrnd(−1, 1)
example of a (2, 50) Kohonen maps befor and after normalization

5 Conclusion and Further Work

We shall observe that the proposed algorithm might be useful for preliminary treatment be-
fore applying non-linear data analysis methods and that it works very well.

We would now like to know why ? �rst works shows that for uniform distribution it is the
border e�ects that make everything working but calculus are very difficult to do in a general
purpose.

We manage to observe on examples that the existence and the unicity of a solution (i.e. a



WSOM 2005, Paris

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−40 −20 0 20 40
−80−60−40−20020406080

−15

−10

−5

0

5

10

15

Figure 11: 200 points with X1 = unifrnd(−1, 1) and X2 = sin(2X1) and X3 = unifrnd(−1, 1)
examples of a (4, 20) Kohonen map before and after normalization

scaling and rotation that leads to average neighborhood spherical with unit radius) is not sure
when dimension d ≤ 2 . This point lead us to use mostly the stochastic version of algorithm.
Another more practical problem of the algorithm is the following one : we have to suppress
direction when there weight is null, not to divide by 0, an idea should be to, also, delete them
when they don’t explain a certain percent of inertia in the PCA step. But this should not be
done in the begining of the algorithm when axis may be very compressed, so when and how
?
A �rst application of the normalization is presented in [5] were we use geodesic distance to
measure the topology preservation of a SOM , to be able to do that we need a preliminary
treatment on data that allows to compute ”good” geodesic distance and ”good” SOM results
at the same time.

References

[1] E.W. Dijkstra (1951), A note on two problems in connection with graphs, Mathematik,
vol. 1 p. 269-271.

[2] J.B. Tenenbaum, V. de Silva (2000), A global geometric framework for non-linear di-
mensionality reduction, Science, vol. 290 p. 2319-2323.

[3] J.A. Lee, A. Lendasse and M. Verleysen (2000), A global geometric framework for non-
linear dimensionality reduction, proceedings of the 8th European Symposium on Arti�cial
Neural Networks, vol. 1 p. 13-20.

[4] C. Aaron (2005), Graph-based Normalisation, proceedings of the 13th European Sympo-
sium on Arti�cial Neural Networks, vol. 1

[5] C. Aaron (2005), Graph-based normalization for non-linear data analysis (II) : appli-
cation to Kohonen’s input structure optimization, proceedings of the 5th Workshop On
Self-Organizing Maps, vol. 1




