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Abstract - Time series are often encoded in vectors and analyzed using standard vectorial
tools (distances, inner products, etc.). Most of them neglect the temporal structure of time
series. This paper proposes a generalization of the Lp norm that takes the temporal structure
into account. This norm remains computationally simple and keeps useful properties, like
e.g. differentiability, which allow integrating the new norm into Self-Organizing Maps to
analyze sets of time series. Experiments on artificially generated data show the advantages
and specificities of the proposed norm.
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1 Introduction

Self-Organizing Maps [3] (SOMs) are powerful data analysis and visualization tools. They
usually project data on a two-dimensional predefined map, allowing strong nonlinearities in
the projection. The operations performed in the SOM algorithm and its variants depend
on a metric: the metric is used in the choice of the ‘winning’ prototype or BMU (Best-
Matching Unit, i.e. the closest prototype to an input datum), and in the adaptation rule of
the prototypes. Usually, the traditional Euclidean distance is used in SOMs. In some cases
however, the Euclidean distance might prove not appropriate to the specific nature of data.
This might be the case when processing time series, i.e. sets of consecutive values in time;
regressors built using a fixed-size sliding window on a time series are an example of such
data [7]. In this case, measuring the Euclidan distances between two regressors does not take
the temporal structure into account: one could switch values in time without any effect on
the distance. Clearly, some information contained in the temporal structure is lost. This
papers presents a simple measure between time series taking that structure into account and
its integration into a SOM. Other approaches can be found in [1, 5, 2].

After a background section (Section 2) about distances and norms aimed at reminding some
concepts and defining the notations, Section 3 presents the proposed norm and the corre-
sponding distance. Next, Section 4 embeds this metric into the SOM algorithm. Section 5
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presents results obtained on artificially-generated time series. The increased robustness of
the proposed metric is put forward, by comparison with the Euclidean one, when the series
is polluted by noise. Finally, conclusions are drawn in Section 6.

2 Vectors, norms and distances

Working directly on the vectors usually does not take the order of the coordinates into
account. As a consequence, the temporal aspect of sequences and time series is lost. For
example, if a D-dimensional vector x is written according to x = [x1, . . . , xi, . . . , xD]T , then
the Lp norm (Minkowski norm) is defined as:

Lp(x) = ‖x‖p =

(
D∑

i=1

|xi|
p

) 1
p

. (1)

As the sum is commutative, the order of the coordinates xi is meaningless.
Starting from Lp, the Minkowski distance is defined as dp(x,y) = Lp(x−y). The distance dp

is a metric for p = 1, 2, 3, . . . ,∞, as it respects the two following axioms: (i) Non-degeneracy
(dp(x,y) = 0⇔ x = y) and (ii) Triangle inequality (dp(x,y) ≤ dp(z,x)+dp(z,y)). Positivity
(0 ≤ dp(x,y)) and Symmetry (dp(x,y) = dp(y,x)) are properties of a metric that can be
derived from the two previous axioms.
A special case is p = 2, leading to the Euclidean norm and distance. The Euclidean norm
and distance are by far the most commonly used ones, because they correspond to the in-
tuitive notions of length and distance in our three-dimensional world. Another important
aspect of the Euclidean distance is that it is very practical when involved in objective func-
tions expressed as a Sum of Squares Error (SSE). Typically, within the framework of vector
quantization, for a set of vectors X = {xj |1 ≤ j ≤ N}, a SSE is written as

SSE =
1

2

N∑
j=1

f(d2
2(x

j ,y∗)) , (2)

where f : R → R is a positive and monotonic function. For example, in the K-means
algorithm, the vector quantization error is defined as in Eq. 2, with f being the identity and
y∗ being the closest prototype from the current data vector xj. Using a SSE that involves
squared Euclidean distance is useful because its derivative is linear; optimizing the SSE
is then possible with standard optimization tools like (stochastic) gradient ascent/descent.
Differentiating d2

2(x,y) with respect to coordinate xi of x results in

∂d2
2(x,y)

∂xi

= 2∆i , (3)

where ∆i = (xi − yi). Therefore,

∂SSE

∂y∗i
=

1

2
f ′(d2

2(x
j ,y∗))

∂d2
2(x

j ,yk(j))

∂y
k(j)
i

= f ′(d2
2(x

j ,y∗))(xj
i − y∗i ) , (4)

where f ′ is the derivative of f with respect to its argument.
As already mentioned, the Euclidean distance or any other distance derived from the Minkowski
norm is insensible to the temporal structure of sequences and time series. In the next section,
a generalization of the Lp norm to time-dependent vectors is proposed.
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Figure 1: Illustration of the LTS
p norm. The norm involves the areas of the triangles located on the

left and right sides of each coordinate.

3 A generalization of the Lp norm to sequential vectors

With respect to Eq. 1, taking the temporal structure of sequences into account is achieved by
involving the previous and next values of xi in the i-th term of the sum, instead of xi alone.
Assuming that the sampling period τ is constant, the proposed norm is

LTS
p =

(
D∑

i=1

(Ai−1 + Ai+1)
p

) 1
p

, (5)

where

Ai−1 =

{
τ
2 |xi| if 0 ≤ xixi−1

τ
2

x2
i

|xi|+|xi−1|
if 0 > xixi−1

and Ai+1 =

{
τ
2 |xi| if 0 ≤ xixi+1

τ
2

x2
i

|xi|+|xi+1|
if 0 > xixi+1

(6)

are respectively the areas of triangles on the left and right sides of xi as shown in Fig. 1. Just
as for Lp, the value of p is assumed to be a positive integer. At the left and right ends of the
sequence, x0 and xD are assumed to be equal to zero. Assuming further that τ = 1, it comes
out that LTS

p = Lp if the coordinates xi are either all positive or all negative and LTS
p ≤ Lp

otherwise. The computational cost of evaluating LTS
p remains comparable to the one of Lp:

the implementation requires only a few additional operations.

Defining δp(x,y) = LTS
p (x − y), it can easily be shown that δp is a metric: it satifies the

non-degeneracy and triangle inequality axioms, and thus possesses the same positivity and
symmetry properties as the Minkowski distance. From the point of view of Functional Data
Analysis [4, 6], time series are discretized functions of time. The distance between functions
x(t) and y(t) can be measured by

Dp(x, y) =

(∫

t

(x(t)− y(t))pdt

) 1
p

. (7)

It can easily be seen that both dp and δp are discrete approximations of Dp. However, δp

approximates Dp slightly better than dp and this difference may be important when Dp(x, y) is
small or when the sampling quality is poor (long sampling period and/or noisy observations).

In the specific case where p = 2, simple developments show that

∂δ2
2(x,y)

∂xi

=
τ2

2
(2− ui−1 − ui+1)(vi−1 + vi+1)∆i , (8)
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Figure 2: Illustration of the distance δp(x,y) derived from the LTS
p norm. Points are placed in such a

way that the absolute differences |∆i| = |xi− yi| are equal on the left and right plot. This means that
the Euclidean distance remains constant for both configurations. On the other hand, the proposed
metric gives a shorter distance in the second configuration (areas are smaller).

where

ui−1 =

{
0(

∆i−1

|∆i|+|∆i−1|

)2 , vi−1 =

{
1 if 0 ≤ ∆i∆i−1

|∆i|

|∆i|+|∆i−1|
if 0 > ∆i∆i−1

, (9)

ui+1 =

{
0(

∆i+1

|∆i|+|∆i+1|

)2 , vi+1 =

{
1 if 0 ≤ ∆i∆i+1

|∆i|

|∆i|+|∆i+1|
if 0 > ∆i∆i+1

. (10)

As for the norm, it can easily be shown that δp(x,y) ≤ dp(x,y), with equality reached if and
only if the ∆i are either all positive or all negative. On the other hand, neglecting border
effects (or taking D → +∞), δp(x,y) = dp(x,y)/2 when the signs of consecutive ∆i alternate.
Figure 2 shows that this property of the distance δp(x,y) allows distinguishing fine differences
in the trend of the time series x and y, rather than taking additive noise into account. Two
pairs {x,y} of time series are shown on the left and right sides of Fig. 2 respectively. Both
pairs are characterized by the same |∆i| values; this means that the distance dp(x,y) is the
same in both exemples. On the other hand, the value of δp(x,y) is about half of the one
of dp(x,y). The use of the δp(x,y) reaches the goal of characterizing the temporal aspect
of vectors. Indeed, on the left of the figure, the series may be considered as significantly
different, because of the systematic (here approximately constant) differences between their
respective coordinates. On the right of the figure however, differences are not systematic and
probably result much more from additive noise than from an expected or observed trend.
The LTS

p metric proposed in this section can be used in any data analysis tool. The next
section shows how it can be embedded into the conventional SOM algorithm.

4 Integrating the proposed metric into a SOM

From the point of view of vector quantization, a SOM may be seen as a generalization of
competitive learning algorithms. For example, Eq. 2 with function f equal to the identity is
the objective function of K-means. Usually, competitive learning algorithms implement the
optimization of the SSE criterion by stochastic gradient descent. This leads to a simple update
rule applied sequentially to each datum: the closest prototype is moved in the direction of
the datum. This update rule is implemented through a partial derivative of the same form
as in Eq. 4; the update of each coordinate y∗i of the BMU y∗ is given by

y∗i ← y∗i + α
∂SSE

∂y∗i
, (11)
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where α is a learning rate taking usually decreasing values between 0 and 1. This rule is called
Winner Takes All because it updates a single prototype at the presentation of a datum. In a
SOM, the update rule is generalized in order to update all prototypes (Winner Takes Most).
For this purpose, the prototypes are given not only coordinates yk in the D-dimensional data
space but also fixed coordinates zk on a (usually) two-dimensional topological map. Most
often, the prototypes are evenly spaced on a rectangular or hexagonal grid. Taking this
additional information into account, the update rule becomes

yk
i ← yk

i + αh

(
d2(z

∗, zk)

λ

)
∂SSE

∂yk
i

, (12)

where k runs over all prototypes, ∗ is the index of the BMU and h is the so-called neighborhood
function. This function decreases as the distance between the updated prototype and the
BMU increases on the topological map; the parameter λ of the neighborhood function h
decreases during the iterations of the algorithm.
In the update rule of the SOM, the proposed metric can be integrated into the partial deriva-
tive of the SSE, similarly to Eq. 4 and using the partial derivative from Eq. 8. As a conse-
quence, the strength of the update is not isotropic anymore, as it was the case when using
the Euclidean distance. Noisy patterns around a prototype have little influence on it; on the
other hand, patterns that have a different trend or shape keep their full influence. To that
extent, the proposed metric makes the SOM more robust with respect to additive noise in
the case of time series.
Note that the distance δp(x,y) could be used to characterize curves in any data analysis tool;
however, it takes more importance in SOMs. Indeed in this algorithm, the most important
distances are the ones used between each datum and its closest prototype. By construction,
such distances are small. Figure 2 intuitively justifies that the distance δp(x,y) differs from
dp(x,y) when time series x and y are very similar; in SOMs, the distance δp(x,y) will thus
seldom degenerate to dp(x,y), confirming the potential interest of the former when data have
a temporal structure.

5 Experiments

5.1 Material and method

A data set X of N = 5000 times series (or sequential vectors) is artificially generated with
D = 10. Each time series xj can be written as xj

i = aj+bjti, where ti = (2i−1−D)/(2D). The
offset aj and slope bj are randomly drawn from uniform distributions, ranging respectively
from −1 to +1 and from −2 to +2. Gaussian noise with standard deviation σ between 0
and 1 by steps of 0.1 is then added to each coordinate xj

i of each vector xj , in order to
generate a second data set Y. The first data set X is called the reference one and the second
the noisy one. Figure 3 shows a small subset of the obtained time series. As these time
series depend only on two parameters, they lie on a manifold whose intrinsic dimension is
two in their ten-dimensional embedding space. Hence a rectangular two-dimensional SOM
should be sufficient to represent the underlying manifold. A two-dimensional SOM including
75 prototypes (5-by-15 grid) evenly located on a hexagonal grid has been used. In the ten-
dimensional space, prototype coordinates are initialized with the help of a PCA of the data
set Y.
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Figure 3: Thirty time series drawn from the data sets X and Y, respectively without and with noise
(standard deviation equal to 0.3).

The SOM algorithm is then run only on the noisy data set Y. The whole Y is swept 60 times
in random order during the SOM learning phase (60 epochs). The learning rate α varies
from 0.5 to 0.05 and the neighborhood width λ varies from 30 to 0, both in a hyperbolic way.
Experiments are carried out both with the Euclidean distance d2 and the proposed distance
δ2. actually, according to the discussion about noise in the previous section, one expects that
experiences realized with noisy vectors and using the distance δ2 will give results that are
closer from results on non-noisy vectors than experiences realized with the distance d2. In
order to measure these differences, the following quantities are measured for SOMs run with
both distances:

1. The BMU-equality rate: the BMU with respect to either d2 or δ2 is computed for each
vector yj in Y and compared to the BMU of the corresponding reference vector xj .
The rate is the proportion of pairs {xj ,yj} for which the BMU is the same.

2. The BMU-distance MSE: as for the previous criterion, BMUs are computed for all xj

and corresponding yj. Then for each j the Euclidean distance between both BMU
is measured in the topological map space (in the hexagonal grid of the SOM). These
distance are squared and averaged in order to obtain a MSE.

3. The residue MSE: as data xj are generated using a linear model, a SOM that is run
on X should yield prototypes with linearly dependent coordinates. However in these
experiments, the SOM is run on the set Y. The sensitivity to the noise (characterizing
the differences between X and Y) can then be measured by the deviation of the pro-
totype shapes from a straight line. In order to measure this deviation, a linear model
is fitted to the coordinates of each prototype and the residues are computed. They are
then squared and averaged in order to obtain a MSE.

Each of these three criterions measures in some way the sensitivity to the noise level σ. The
differences between the measures obtained with the Euclidean distance d2 and the proposed
distance δ2 will thus reveal if it is less sensitive to noise than d2, and thus more able to catch
the time structure in the vectors.

5.2 Results and discussion

Figure 4 shows the prototypes of the SOM run on the Y set, using the distance d2 (left) and the
Euclidean one (right). Prototypes that are obtained with δ2 are clearly smoother; they result
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Figure 4: Representation of the 2D grid space of the SOMs; for each prototype, the corresponding
time series (or D-dimensional coordinates) is drawn. Results for a SOM run on the data set described
in Section 5.1 (standard deviation of noise is 0.3). On the left the SOM is run with the Euclidean
distance d2. On the right it is run with the proposed distance δ2. As can be seen, the SOM running
with δ2 yields similar results, except that D-dimensional coordinates of prototypes are less noisy than
with the Euclidean distance.
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Figure 5: BMU-equality rate, BMU-distance MSE, and residue MSE, w.r.t. the level of noise.

from the quantization of the time-dependent vectors and are not too influenced by the added
noise. High-frequency components of the white noise are filtered. On the contrary, prototypes
on the left are more influenced by noise. Figure 5 shows values of the three measures detailed
in the previous section. The left plot shows the BMU-equaliy rate that decreases with the
level of noise, as expected. The use of the distance δ2 shows a slightly improved insensitivity to
noise. This difference is more obviously noticed in the BMU-distance MSE criterion (middle
plot) that measures the mismatch distance on the map instead of the match rate. The right
plot illustrates the ability of the SOM to learn the temporal dependencies in the vectors
versus the added noise; of course the first is expected, while the second should be avoided
as much as possible. In the first case, the prototype representations will be close to straight
lines, whereas in the second case they will be polluted by noise. The right part of Fig. 4
clearly shows a greater ability of the distance δ2 to neglect the high-frequency components of
the noise and thus to capture the low-frequency trends.

Contrarily to other techniques, the use of δ2 does not require any data preprocessing. More-
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over, the proposed metric is model-free and parameter-free. For example, in Functional Data
Analysis, distances between functions (or time series) are sometimes computed as distances
between vectors of regression parameters. This forces the user to design a particular regres-
sion model. The use of filters leads to the same problem.

6 Conclusion

This paper presents a simple distance measure able to exploit the temporal structure of
sequences or time series. Unlike the Euclidean or Minkowski distances, it takes into account
the numbering of the vector coordinates, making it possible to extract additional information
from the vectors, which is usually lost in the processing. The proposed distance is integrated
into Self-Organizing Maps, and tested on a set of artificially generated time series. It is shown
by algorithmic considerations and by simulations that the use of the proposed distance both
takes into account the temporal structure of data and reduces the influence of additive noise.
Functional Data Analysis (FDA) methods [4, 6] also take the temporal structure of data
into account, by fitting splines or other basis functions to data; the principle is applicable
to SOMs too [5]. Compared to FDA, the proposed distance measure allows working with
low-dimensional vectors (a 10-dimensional example is illustrated in this paper), is simple,
computationally efficient, non-parametric and does not force any smoothing.
Future work aims at using the proposed metric on short time series of medical measurements
(typically the effect of drugs on living organisms). Another application will be the analysis
of regressors built from a single time series using sliding windows.
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