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Abstract - We introduce a new learning algorithm for topographic map formation with
Edgeworth-expanded Gaussian activation kernels. First, we consider miztures of Edgeworth-
expanded Gaussians for modeling the input density, and derive a simple closed form solution
for estimating the kernel parameters based on weighted moment matching. Then, the topo-
graphic map formation algorithm is introduced which is based on the batch map algorithm and
weighted moment matching.
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1 Introduction

Several unsupervised learning algorithms have been devised that develop topographically-
organized maps of Gaussian mixture densities (for references, see [10]). Unifying accounts
of the homoscedastic (equal-variance) case have been introduced by Graepel and co-workers
[5], and Heskes [6]. The former authors adopted a statistical physics approach, showing
the connection between different classes of Gaussian kernel-based topographic map forma-
tion algorithms and, as a limiting case, the batch map version of the Self-Organizing Map
(SOM) algorithm [8]. Heskes showed the connection between minimum distortion topo-
graphic map formation and maximum likelihood homoscedastic Gaussian mixture density
modeling. Another approach is to minimize the Kullback-Leibler divergence, an idea that
has been introduced in kernel-based topographic map formation by Benaim and Tomasini
[3], using homoscedastic Gaussians, and extended more recently by Yin and Allinson [12] to
heteroscedastic (different-variance) Gaussians. A unifying account of the heteroscedastic case
has been introduced by Van Hulle [11], showing the connection between minimum distortion
topographic map formation, maximum likelihood heteroscedastic Gaussian mixture density
modeling and Kullback-Leibler divergence.

In principle, kernels other than Gaussians could be used in topographic map formation (e.g.,
see [10]). In this article, we suggest the Edgeworth-expanded Gaussian kernel, which consists
of a Gaussian kernel multiplied by a series of Hermite polynomials of increasing order, and of
which the coefficients can be estimated through higher-than-second-order moment matching.
The Edgeworth expansion of the univariate Gaussian density became popular in the neural
network community when it was introduced in Independent Component Analysis (ICA) [1, 4]
and projection pursuit [7].

The article is organized as follows. We first recall the univariate Edgeworth expansion and
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then, as a first novelty, derive its extension to univariate Edgeworth-expanded Gaussian
mixture density modeling, based on constrained log-likelihood maximization. Next, we con-
sider the multivariate Edgeworth-expansion and multivariate Edgeworth-expanded Gaussian
mixture density modeling. Finally, as a second novelty, we introduce a topographic map
formation algorithm for Edgeworth-expanded Gaussian kernels.

2 Univariate Edgeworth Expansion

The Edgeworth series expansion of the scalar density p(v), v € V C R, around its best
Gaussian estimate ¢, (i.e., with the same mean p and standard deviation o as p) is [2]:
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with k; the ith standardized cumulant, and H; the Hermite polynomial of order i, H3(v) =
28 — 3z, Hy = 2* — 622 + 3, Hs = 2° — 1023 + 152, Hg = 2% — 152* + 4522 — 15, with z the
standardized scalar z = “>£. Tt can be verified that the Edgeworth expansion cannot be
made arbitrarily good by including terms of higher and higher orders. Usually, the third- or
fourth-order (Hermite polynomial) expansion suffices.

3 Univariate Edgeworth-expanded Gaussian Mixture

We now consider the homogeneous mixture density estimate p(v) = % > i p(vli, wi, 04, K34, Kai),

in which we take for p(v|i, w;, 0, K3i, k4;) the Edgeworth expanded kernels eq. (1), up to the

fourth-order. In order to determine the cumulants, consider first the following constrained
optimization problem with which the moments can be determined:
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where we have added the subscript 7 to denote kernel 7, and where the constraints correspond
to the 3rd and 4th standardized cumulants of kernel i, just as if kernel 7 would be the only
kernel. We solve the optimization problem with the Lagrange multipliers technique:
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with the As; and Ay, Vi, the Lagrange multipliers. The result leads to the following fixed
point update rules, used in an Expectation-Maximization (EM) format:
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with p1; = w;, pe; = 01-2 (we have changed the notation of our kernel parameters so as to put
in the Edgeworth expansion framework). Note that we get the same result when reversing
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Figure 1: (A) Gaussian mixture density estimate (dashed line) (A) and fourth-order Edgeworth-
expanded mixture density estimate (dashed line) (B) for the case of 3 kernels (thin full lines) and the
uniform input distribution [—1,1] (thick full line).

the inequality signs in eq. (2). The cumulants are thus determined in a similar way as the
first two cumulants in the Gaussian mixture case (i.e., weighted moment matching).

As an example, we consider the uniform distribution [—1, 1] modeled using N = 3 Gaussian
kernels and 3 fourth-order Edgeworth-expanded Gaussian kernels (Fig. 1). We observe the
smaller ripple in the Edgeworth-expanded case. The mean squared error (MSE) between the
correct distribution and the estimate is 4.59 x 103, for the Gaussian and 3.20 x 102 for the
Edgeworth-expanded case.

4 Multivariate Edgeworth Expansion

Let v = [v1,...,v4] € V C R? be a random vector drawn from the density p(v). The
Edgeworth expansion of p(v), up to order five about its best normal estimate, is given by [2]:

1 1
pV) = dp(v) [ 1+ gy ik Hijr(v) + > ki (V) +
i7j7k ) i’j,k,l )

1
> o iikitpaHijkipg(V) - | (4)
Likpg

with H;;, the ijk-th Hermite polynomial, with 4,7,k the corresponding input dimensions,

i,J,k € {1,...,d}, and K, j ; the corresponding standardized cumulant, x; ; , = —n;j’;—z, with
kijk the third cumulant over input dimensions i, j, k, and where the sum over all combinations
1,7,k is considered, and H;ji; the ijki-th Hermite polynomial over input dimensions ¢, j, k, [,
Kijki—0ij0k1[3]
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and k; j, the corresponding standardized cumulant, x;jx; = , with K the

fourth cumulant over input dimensions i, j, k,1, 0;j0k(3] the sum over the 3 partitions of 4
indices and o;; the covariance between v; and v;. Finally, the cumulants are obtained from
the moments using the formula of McCullagh (1987).
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Figure 2: Left panel: Mixture density estimate of a 2 x 1 rectangular uniform density, rotated over
45 deg, using 3 heteroscedastic Gaussian kernels. Right panel: Idem but using 3 Edgeworth-expanded
Gaussian kernels.

5 Multivariate Edgeworth-expanded Gaussian Mixture

The weighted moments are estimated in the same way as in the univariate case, thus, also
as the solutions of a constrained log-likelihood procedure. As an example, consider a 2 x 1
rectangular uniform density rotated over 45 deg with 100k data points drawn from it. We
take 3 kernels of which the centers are initialized randomly by sampling the input density.
We further initialize with a diagonal covariance matrix with diagonal elements equal to 0.5;
all initial third and fourth moments are zero. The result is shown in Fig. 2. We observe
that 2 Edgeworth-expanded kernels are stretched along the long axis with almost flat peaks,
which indicates a substantial fourth-order moment contribution along this axis. In addition
to an improved capturing of the overall shape of the distribution, the MSEs are 0.0110 and
0.00936 for the Gaussian and Edgeworth-expanded cases, respectively.

6 Topographic Map Formation

One possibility for topographic map formation which comes to mind is to start with Heskes’
update rule for the Gaussian kernel centers [6]:

Wi — Xon ij(ﬂvn))\(i,j)v”
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with w; = [wy;,...,wg], and A(7,7) the usual neighborhood function. It is tempting to
update the kernel’s second moments in a similar way, inspired by the second moments in
Gaussian mixture density modeling, e.g., for the variance along the first dimension:
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However, as shown in [11], when deriving the update rule in a maximum log-likelihood format,
the presence of the neighborhood makes that we no longer have a closed form solution for
the second moments. Only when the neighborhood vanishes this is the case (which actually
reverts to regular Gaussian mixture density modeling). Furthermore, even when we would

(5)

(6)
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Figure 3: Top row: Topographic map formation of 4 x 4 lattice given 10k data points taken from
a uniform square distribution [—1,1]? (square boxes). Snapshots for epochs 0,1,10,100 (from left to
right). Bottom row: Corresponding density estimates shown as contour plots (10 equidistant levels).

consider this possibility as a heuristic, the Gaussian kernels’ ranges will grow large during
the contraction phase of the topographic map formation process, so as to span as much as
possible the input distribution, but the algorithm cannot recover from these large spans and
lumped kernel centers, even when the neighborhood has completely vanished. Clearly this
seems to be a local, non-optimal log-likelihood solution. In order to remedy this, we consider
a heuristic procedure in which we update the kernel centers according to Kohonen’s batch
map algorithm [8]:

o AV, ) v

M YCID I
but in which we select the winner according to the Edgeworth-expanded kernel that is most
active: 7*(v") = arg max;{p(v"|7)}. We then update the other parameters of the kernels as
done in the Edgeworth-expanded Gaussian mixture case. In this way, we are able to both
develop a topographic map and to perform mixture density modeling, but constrained by the
locations of the kernel centers.
As an example, consider the uniform square distribution [—1, 1]2, from which 10k data points
are taken, and a N = 4 x 4 lattice. The kernel centers are initialized by sampling the
input distribution, and the covariance matrix is initialized by adopting a diagonal one with
non-zero elements equal to 0.1%; all initial third and fourth moments are equal to zero. A
Gaussian neighborhood function A(.) is chosen with initial range 0,(0) = 2, and which is
decreased exponentially over tmay = 100 epochs: 0 (t) = 2exp (—2t/tmax). At each epoch t,
we perform one step of the batch map algorithm, and then iterate between the expectation-
and maximization steps in the EM stage to determine the second, third and fourth moments
until convergence (usually a few runs). A few snap shots of the map formation process are
shown in Fig. 3 together with the density estimates.
Finally, since the computational complexity rapidly increases with dimensionality, we could,
as a simplification, consider only the third and fourth-order expansions along the dimensions
with the largest second moment(s) of each kernel.

Vi, (7)
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Conclusion

We have introduced two novelties in this article. First, we derived a simple closed form so-
lution for estimating the parameters of mixtures of Edgeworth-expanded Gaussian kernels
based on weighted moment matching. Second, we introduced a new topographic map forma-
tion algorithm for Edgeworth-expanded Gaussian activation kernels, based on the batch map
algorithm and weighted moment matching.
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