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Abstract –A new clustering algorithm based on emergent SOM is proposed. This algorithm, 
called U*C, uses distance information together with density structures. No particular geo-
metrical cluster model is imposed on the data by U*C. In contrast to other clustering algo-
rithms, U*C identifies cluster structures that are not separable by contiguous surfaces. The 
number of clusters is determined automatically. The validity of the clusters found is assessed 
using the U*-Matrix. The U*-Matrix gives a combined visualization of distance and density 
structures of a high dimensional data set. U*C clustering is superior to standard clustering 
algorithms such as K-means and hierarchical clustering. This is demonstrated on a set of criti-
cal clustering problems called FCPS, which is published on our web site. 
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1   Introduction 
 
Contrary to common belief, Self Organizing Maps (SOM) are not clustering algorithms. The 
identification of the neurons of a SOM with clusters results in SOMs with very few neurons, 
since the number of clusters is usually small. It can be shown, that this usage of SOMs is just a 
variant of the K-means clustering algorithm [1]. SOMs with a large number of neurons can be 
regarded as a nonlinear projection from high dimensional data space to a map in the geo-
graphical sense. Such SOM disentangle cluster structures that are linear not separable. The 
ChainLink example (see Fig. 1) was among the first to illustrate this [2]. Distance relationships 
in a high dimensional data space can be visualized on a SOM in form of a U-Matrix [3]. The 
recently introduced P-Matrix allows a visualization of density structures of the high dimen-
sional data space [4]. In this paper we present a combined visualization of distance and density 
in form of the U*-Matrix (Chapter 2). Then we define a novel clustering algorithm, called 
U*C, which uses distance and density information (Chapter 3). U*C is tested on some crucial 
clustering problems (Chapter 4). Its performance is compared to K-means and popular 
hierarchical clustering algorithms (Chapter 5). The validity and precision of the resulting 
clusters can be judged using the U*-Matrix. The performance of U*C is discussed in chapter 6.  
 
2 SOM with emerging distance and density structures 
 
SOM with a large number of neurons are mappings from a high dimensional data space D⊂Rn 

onto neurons on a map, in a geographical sense. In the following a trained SOM with a suffi-
ciently large number of neurons k is presumed, typically k >4000. The SOM training algorithm  
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constructs a nonlinear and topology preserving mapping of the input data set E = {x1,...,xd} 
with xi ∈  D onto the set of  neurons M={n1,...,nk} with associated weight vectors W = 
{w1,…,wk}. Each data point xi is mapped to its bestmatch neuron bm(xi)= nb∈M such that 
d(x,wb) ≤  d(x, wj) ∀  wj∈  W, where d is the distance on the data set. The neurons are arranged 
on a two dimensional map: each neuron i possesses a set of two coordinates embedded in a two 
dimensional surface. The set of immediate neighbors of a neuron ni on the map is denoted by 
N(i). It is assumed, that the SOM gives a mapping with minimal, or at least tolerable, topologi-
cal errors. Compare [8] for map dimensions and surface structures to minimize projection er-
rors. For the U-, P- and U*-Matrix defined below, the map is the floor space layout for a 
landscape like visualization of distance- and density structures of the high dimensional data 
space. Structures emerge on top of the map by the cooperation of many neurons. Single 
neurons are only tiny parts of these structures. SOM showing such emerging structures have 
been called emergent SOM (ESOM) [5]. 
    

                     
Figure 1: a) ChainLink with Ward clustering    b) U-Matrix showing two disentangled clusters 
 
2.1 U-Matrix 
 
The U-height for each neuron ni is the average distance of ni’s weight vectors to the weight 
vectors of its immediate neighbors N(i). The U-height uh(i) is calculated as follows:  

∑=
j

ji wwd
n

iuh ),(1)( , j ∈  N(i), n = |N(i)|. 

A display of all U-heights on top of the map is called a U-Matrix [3]. A single U-height shows 
the local distance structure. The local average distance at wi is shown at neuron ni. The overall 
structure of densities emerges, if a global view of a U-Matrix is regarded. Figure 1b shows an 
example of a U-Matrix on ESOM with 50x82 neurons. 
 
2.2P-Matrix 
 
The P-height ph(i) for a neuron ni is a measure of the density of data points in the vicinity of 
wi: ph(i) =|{x ∈E | d(x, wj) < r >0, r ∈R}|.  A display of all P-heights on top of the grid G is 
called a P-Matrix [4]. Figure 3b, 4b and 5b show examples of P-Matrices. The P- height is the 
number of data points within a hypersphere of radius r. The radius r should be chosen such that 
ph(i) approximates the probability density function of the data points. The usage of the 
ParetoRadius, as described in [4], is a choice for r. Median filtering within the N(i) window 
can be applied on the P-Matrix. This reduces local fluctuations (noise) in the density 
estimation without disturbing the overall picture. Such a filtering preserves, however, the 
density gradients important for clustering. 
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2.3 U*-Matrix 
 
For the identification of clusters in data sets it is sometimes not enough to consider distances 
between the data points. Consider, for example, the TwoDiamonds data set depicted in Figure 
2. The data consists of two clusters of points on a plane. Inside each “diamond” the values for 
each data point were drawn independently from uniform distributions. At the central region, 
marked with an arrow in Figure 2, the distances between the data points are very small. For 
distance based cluster algorithms it is hard to detect correct boundaries for the clusters. Dis-
tance oriented clustering methods such as single linkage, complete linkage, Ward etc. produce 
classification errors. The picture changes, however, when the data’s density is regarded (see 
Figures 2, 3 and 5). The density at the touching point of the two diamonds is only half as big as 
the densities in the center regions of the clusters. 

 
Figure 2: TwoDiamonds data set 

 

 
Figure 3: a) U-Matrix of TwoDiamonds                          b) P-Matrix of TwoDiamonds 

 
As the TwoDiamonds data set shows, a combination of distance relationships and density rela-
tionships is necessary to give an appropriate clustering. The combination of a U-Matrix and a 
P-Matrix is called U*-Matrix. The U*-height u*h(i) for a neuron ni is the U-height multiplied 
with the probability that the local density, as measured by ph(i), is low. As an estimate of this 
probability the empirical density function can be used:  
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plow(i) = Pr(data density is low for neuron ni)
{ }

{ }matrix-P  p
ph(i) p |matrix-P  p

   
∈

>∈
≅  (i). 

The U*height is then calculated as u*h(i) = uh(i) . plow(i). If the local data density is low: 
u*h(i) = uh(i). This happens at the presumed border of clusters. If the data density is high, then 
u*h(i) = 0. This is in the central regions of clusters. For neurons with median density holds: 
u*h(i) = uh(i)*0.5. The U*-Matrix exhibits therefore the local data distances as heights, when 
the data density is low (cluster border).  
If the data density is high, the distances are scaled down to zero (cluster center). An alternative 
to formula (i) is, to adjust the multiplication factor such that u*h(i)=uh(i) for median P-heights 
and u*h(i)=0 for the top 20 percent of P-heights [7]. 
The cluster structure of the data can be seen more clearly on the U*-Matrix than on the U-Ma-
trix. Figure 4 compares, for example, the U-Matrix taken from [6] to a U*-Matrix of the same 
data set. Since density and distance play different roles in the definition of clusters, we think 
that the three different matrices, U-, P- and U*-Matrix together give an appropriate impression 
of the cluster structure of any high dimensional data (see Figure 4).  

 
Figure 4: a) U-Matrix of DNA microarray data [6],      b) U*-Matrix of the same data. 
 
3   U*C Clustering Algorithm 
 
A topological correct ESOM projects a cluster onto a coherent area on the map (cluster area). 
Points within the cluster are mapped to the inside of the cluster area. Data points at the border 
(surface) of the cluster are projected to the border of the cluster area. Consider a data point x at 
the surface of a cluster C, with ni = bm(x). The weight vectors of its neighbors N(i) are either 
within the cluster, in a different cluster or interpolate between clusters. If we assume that the 
inter cluster distances are locally larger then the local inner cluster distances, then the U-
heights in N(i) will be large in such directions which point away from the cluster C. This 
means, a gradient descent on the U-Matrix will lead away from cluster borders. A movement 
from one neuron ni to another neuron nj with the result that wj is more within a cluster C than 
wi is called immersive. For data points well within C, a gradient descent on a U-Matrix will, 
however, not necessarily be immersive.  
The P-heights follow the density structure of a cluster. Under the assumption that the core parts 
of a cluster are those regions with largest density, a gradient ascent on the P-Matrix is immer-
sive. Clusters may also be defined by density alone instead of distance. See, for example, the 
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EngyTime data set shown in Figure 5a and its density structure as shown by the P-Matrix in 
Figure 5b. This data set represents situations where the data generation can be described ap-
propriately by Hidden Markov Models.  
 

 
Figure 5: a) EngyTime/SingleLinkage clustering               b) P-Matrix of EngyTime 
 
At the borders of a cluster the measurement of density is, however, critical. At cluster borders 
the local density of the points should decrease substantially. In most cases the cluster borders 
are defined either by low point densities (see Figure 5) or by “empty space” between clusters 
(= large inter cluster distances). For empirical estimates of the point density a gradient ascent 
on a P-Matrix may therefore not be immersive for points at cluster borders. A movement on a 
SOM map which follows first a gradient descent on a U-Matrix and then a gradient ascent on a 
P-Matrix is called immersion. Let I denote the end points of immersion starting from every 
neuron on a map. If the density within a cluster is constant, immersion will not converge to a 
single point for a cluster for all starting pointswithin a cluster. The U*-Matrix is then used to 
determine which points in I belong to the same cluster. The watersheds of the U*-Matrix are 
calculated using the algorithm described in [5]. Points that are separated by a watershed are 
assigned to different clusters, points within the same basin to a single cluster. The following 
pseudocode summarizes the U*C clustering algorithm described above. 
U*C clustering Algorithm:  given ESOM with U-Matrix, P-Matrix, U*-Matrix, I = {}; 
Immersion: 
   For all neurons n of an ESOM: 

1) from neuron n follow a gradient descent on the U-Matrix until a minimum is reached 
in neuron u 

2) from neuron u follow a gradient ascent on the P-Matrix until a maximum is reached 
in neuron p. 

3) I = I ∪ {p};  Immersion(n) = p. 
Cluster assignment: 

1) calculate the watersheds for the U*-Matrix ( e.g. using [5]). 
2) partition I using these watersheds into clusters C1,…Cc 
3) assign a data point x  to a cluster Cj if  Immersion(bm(x) )∈ Cj. 
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4 Fundamental Clustering Problems Suite 
 
The efficiency of the U*C clustering algorithm is tested using a set of ten clustering problems 
called Hepta, Lsun, Tetra, Chainlink, Atom, EngyTime, Target, TwoDiamonds, WingNut and 
GolfBall. Any reasonable clustering algorithm should be able to solve these problems correctly 
[1]. As can be seen below, however, standard algorithms like K-means, and hierarchical clus-
tering algorithms, like single linkage and Ward have difficulties on several data sets. The suite 
of data sets is called Fundamental Clustering Problem Suite (FCPS). The suite can be 
downloaded from the website of the author (http://www.informatik.uni-marburg.de/~ 
databionics). FCPS poses some hard clustering problems. Chainlink and Atom are not separa-
ble by hyperplanes. The GolfBall data set consists of points that are equidistant on the surface 
of a sphere. This data set is used to address the problem to impose cluster structures when no 
such structure is present. The problem of outliers is addressed by the Target data set shown in 
Figure 6. 

 
Figure 6: SL, Ward and K-means clustering algorithms on the Target data set 

 
The following is a short description of the data set and the problem it poses to cluster algo-
rithms. Pictures of the data sets are shown in the Figures of this paper. 

Name Cases # Vars #Clusters Main Clustering Problem 
Hepta       212 3 7 different densities in clusters 
Lsun        400 2 3 different variances in clusters 
Tetra       400 3 4 large inner distances vs. small inter distances   
Chainlink   1000 3 2 not separable by linear decision boundaries 
Atom        800 3 2 linear not sep., different densities and variances 
EngyTime    4096 2 2 density defined clusters 
Target      770 2 6 outliers 
TwoDiamonds 800 2 2 touching clusters 
WingNut     1070 2 2 largest densities at cluster borders 
GolfBall    4002 3 1 equidistant points, no cluster at all 

 
5 Results 
 
The results of U*C Clustering are compared to K-means as most popular partitioning cluster 
algorithm. The hierarchical cluster algorithms SingleLinkage and Ward were applied to the 
FCPS data sets. All algorithms were used as implemented in MATLAB™. Since K-means 
converges to a local minimum of a cost function, the best of 100 repetitions was kept. The cor-
rect number of clusters was given as parameter to all standard algorithms. Shown are the over-
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all accuracies. Performances lower than 80% are emphasized. There is no data set on which 
U*C performs worse than any of the other clustering algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Accuracy (= nr of correct classifications) of the clustering algorithms on FCPS 
*) see last paragraph of dicsussion. 

6 Discussion 
 
SingleLinkage (SL) clustering imposes a chain of data points as cluster model on the data. This 
algorithm is usually misled, if the local inner cluster distances are in the same range as the 
inter cluster distances. This can be seen in the performance on the Tetra, EngyTime, Two Dia-
monds and WingNut data set. SL is, however, able to separate clusters that are not separable by 
hyper planes, e.g. ChainLink and Atom. The fundamental cluster model of Ward is an hyper 
ellipsoid. For data sets which do not fit this model (5 of the 10 sets in FCPS), Ward produces 
an erroneous clustering. Most clustering algorithms require the knowledge of the number of 
clusters. U*C determines the number of clusters automatically. It is, however, crucial to assess 
the validity of a clustering. Dendrograms as used in hierarchical clustering algorithms seem to 
address this, are, however, sometimes misleading as the following example shows. Figure 7a 
shows a dendrogram of the GolfBall data using Ward hierarchical clustering. Such a 
dendrogram would suggest 3 or 6 cluster.  

 
Figure 7: a)GolfBall  Dendrogram of Ward            b) Golf Ball data & K-means clustering 
K-means requires that the clusters are compact and have about the same variance. The bound-
ary separating two clusters in K-means is always a hyperplane. This results in the bad perform-
ance of K-means on 5 of the 10 data sets in the FCPS. K-means enforces any number of clus-
ters on the data. In Figure 7b a K-means clustering of GolfBall with k = 6 is shown. For high 

Data Set SingleLinkage Ward K-means U*C Clustering 
Hepta 100 % 100 % 100 % 100 % 
Lsun 100 % 50 % 50 % 100 % 
Tetra 0.01 % 90 % 100 % 100 % 
Chainlink 100 % 50 % 50 % 100 % 
Atom 100 % 50 % 50 % 100 % 
EngyTime 0 % 90 % 90 % 90 % 
Target 100 % 25 % 25 % 100 % 
TwoDiamonds 0 % 100 % 100 % 100 % 
WingNut 0 % 80 % 80 % 100 % 
GolfBall 100 % 50 %(best) * ) 100 % 
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dimensional data this result may, however, be taken serios, in particular in the light of the 
dendrogram of Figure 7a. The U*-Matrix serves as a feedback of the cluster structure in U*C. 
Compare Figure 4b, for example, to see, whether there are cluster structures in a very high 
dimensional data set. 
 
7 Conclusion 
 
A new clustering algorithm based on emergent SOM (ESOM) is proposed. This algorithm uses 
distance structures (U-Matrix) as well as density structures (P-Matrix) of the data set. It in-
herits the nonlinear disentangeling of cluster structures from the underlying SOM. No particu-
lar geometrical cluster model is imposed on the data by U*C. Other clustering algorithms im-
pose such a model and are performing poor, if the data set is of a different structure. The num-
ber of clusters is determined automatically in U*C. The correctness and validity of the clusters 
found can be assessed using the U*-Matrix. The U*-Matrix shows a combined picture of dis-
tance and density structures of a high dimensional data set. U*C performs superior to standard 
clustering algorithms such as K-means and the most popular hierarchical algorithms [1]. This 
is demonstrated on a group of data sets which represent fundamental clustering problems, like 
different variances, outliers and other structural difficulties. U*C and other tools for ESOM, 
see [9], together with an extended version of this paper, can be downloaded from our web site. 
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