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Abstract - The objective of this work is an extension of a specific family of Self Organizing
Maps, namely granular Self-Organizing Maps or grSOM for short, using a novel parameter-
ized metric distance. The resulting Self-Organizing Map, namely mass-grSOM is applicable
beyond the Euclidean space Rn to Fn where F denotes the metric set of fuzzy interval numbers
(FINs). A FIN here represents a local probability distribution. The proposed mass-grSOM de-
scribes linguistically the input space of a system by a set of multi-dimensional FINs induced
from input/output observation data. Learning by mass-grSOM takes place in two stages.
Firstly, an optimal set of multidimensional FINs is calculated using Kohonen’s self orga-
nization principles. Secondly, a genetic algorithm is employed to adjust the parameters of
a tunable metric distance in order to improve the classification performance. Experimental
results on a benchmark classification problem show that the mass-grSOM can produce very
good classification results; moreover descriptive decision making knowledge (linguistic rules)
is induced from the training data.

Key words - Self organizing maps, lattice theory, metric distance, genetic algo-
rithm, classification, rule extraction.

1 Introduction

The interest in building machine learning applications in a black-box fashion has been in-
creased during the past years. Neuro-fuzzy systems and neural networks has been successfully
used as universal model-free estimators [3],[16],[17],[18] for classification, modeling, and con-
trol of non-linear/dynamical systems. While advanced clustering techniques [1],[4],[13], [19],
are widely used for identification [15], an interest grows in model definitions, for handling
jointly and non-numeric data [8],[10],[14].
A novel self organizing map, based on mathematical lattice theory, namely grSOM, has been
presented lately [11]. The grSOM is applicable in Fn where F denotes a metric set of fuzzy
interval numbers [7]. Since each FIN represents a local probability distribution, its shape and
location must be preserved. The later constraint imposes a changeover from conventional
training rules [6],[17], [16] to a novel training approach, which permits the fine tuning of the
model, without distorting the original local probability distributions.
In this work a new training rule is proposed based on a novel parameterized metric distance,
defined on a lattice metric space. The proposed metric distance allows the formation of a
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training rule, without violating the aforementioned constraint, applicable to disparate data
types including (fuzzy) numbers and intervals.
This work is organized as follows. In section 2 the mathematical background is given. In
section 3, the grSOM algorithm is summarized. The proposed mass-grSOM algorithm is pre-
sented in section 4. Comparative experimental results on Fisher-IRIS classification problem
are realized in section 5. Finally, the contribution of this work is summarized in section 6.

2 Mathematical background and illustrations

The mathematical background required to define the novel training rule is summarized in
this section.

2.1 Metric Lattices Mh of Generalized Intervals

Definition 1 A positive generalized interval [x1, x2]h of height h is a mapping µh
x1,x2

(x) :

R → {0, h} where x1 ≤ x2 and µh
x1,x2

(x) =





h, x1 ≤ x ≤ x2

0, otherwise

A negative generalized interval [x1, x2]h of height h is a mapping µh
x1,x2

(x) : R → {0,−h}

where x1 > x2 and µh
x1,x2

(x) =




−h, x1 ≥ x ≥ x2

0, otherwise
where h ∈ (0, 1].

The set of positive (negative) generalized intervals of height h will be denoted by Mh
+ (Mh−).

The sets of positive (negative) generalized intervals for all h ∈ (0, 1] will be denoted, respec-
tively, by M+ (M−). An ordering relation can be defined in Mh, h ∈ (0, 1] as shown in the
following.

(R1) if [a, b]h, [c, d]h ∈Mh
+ then : [a, b]h 6 [c, d]h ⇔ [a, b] ⊆ [c, d]

(R2) if [a, b]h, [c, d]h ∈Mh− then : [a, b]h 6 [c, d]h ⇔ [d, c] ⊆ [b, a], and
(R3) if [a, b]h ∈Mh−, [c, d]h ∈Mh

+ then [a, b]h 6 [c, d]h ⇔ [b, a] ∩ [c, d] 6= ∅
(1)

The ordering relation given by equation (1) is a partial ordering relation [7]. Moreover the
partially ordered set Mh is a mathematical lattice [7]. More specifically, [a, b] ∧ [c, d] =
[a ∨ c, b ∧ d] and [a, b] ∨ [c, d] = [a ∧ c, b ∨ d].

Definition 2 A valuation in a lattice L is a real function V : L→ R which satisfies V (x) +
V (y) = V (x ∨ y) + V (x ∧ y), x, y ∈ L. A valuation is called positive iff: x < y in L ⇒
V (x) < V (y)∀x, y ∈ L.

A positive valuation function V (.) in a lattice L implies [2] a metric distance function d :
L× L→ R+ given by d(x, y) = V (x ∨ y)− V (x ∧ y) for x, y ∈ L.

For the totally-ordered lattice R of real numbers, in particular, any strictly increasing function
f(.) is a positive valuation function, the latter can be used for introducing a positive valuation
function in Mh.
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Proposition 1 Let f : R → R be a strictly increasing function, namely underlying positive
valuation function. Then the function V : Mh → R given by: V ([a, b]h) = f(b) − f(a) is a
positive valuation function in Mh.

An underlying positive valuation function f : R → R will be constructed here from an

integrable mass function m : R → R+ using the formula: f(x) =
x∫
0

m(t)dt

A mass function is used here for attaching a weight of significance to a real number.
For x, y ∈Mh (x = [a, b]h, y = [c, d]h) there follows a metric distance between two generalized
intervals as: dh([a, b]h, [c, d]h) = V ([a, b]h∨ [c, d]h)−V ([a, b]h∧ [c, d]h), which leads to formula:

dh([a, b]h, [c, d]h) = f(b ∨ d)− f(b ∧ d) + f(a ∨ c)− f(a ∧ c). (2)

For example note that for a mass function m(t) = h and a ∨ b = max(a, b) , a ∧ b =
min(a, b)∀ a, b ∈ R, it follows a metric distance between two generalized intervals [a, b]h and
[c, d]h given by:

dh([a, b]h, [c, d]h) = h(|a− c|+ |b− d|) (3)

In this work a non linear Positive Valuation Function (PVF) is introduced by the formula:
f(x) =

∑n
i=1 {pi × tanh(x−qi

ri
)}, where pi ∈ R∗+, qi ∈ R, ri ∈ R∗ The integer n denotes the

order of PVF. The function f(x) is strictly increasing, thus suitable to be used as an under-
lying positive valuation function. An example of an underlined positive valuation function
for pi = ri = 1 and q1 = 5, q2 = 1, q3 = −5 and the corresponding constructive mass function
is shown in Figure 1.
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Figure 1: An underlying positive valuation function (a) and the corresponding mass function (b)

The parametric form of the proposed metric distance has certain advantages over alternative
metric distances (i.e the conventional Euclidean distance). More specifically the conven-
tional Euclidean metric distance between two numbers depends only on the relative differ-
ence between the two numbers regardless of their location on the universe of discourse; i.e.
dE(x, x + c) = |c| ∀x ∈ R where as, here, the location matters. In terms of the proposed dis-
tance definition the aforementioned Euclidean distance corresponds, to a positive valuation
function f(x) = x∀x ∈ R or mass function m(t) = 1, ∀t ∈ [0, x].

2.2 The Metric Lattice F of FINs

Definition 3 A Fuzzy Interval Number (FIN) is a function F : (0, 1] → M such that (1)
F (h) ∈ Mh, (2) either F (h) ∈ Mh

+ (positive FIN), or F (h) ∈ Mh− (negative FIN) for all
h ∈ (0, 1], and (3) h1 ≤ h2 ⇒ {x : F (h1) 6= 0} k {x : F (h2) 6= 0}, where 0 ≤ h1 ≤ h2 ≤ 1.
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The set of FINs is denoted by F; more specifically the sets of positive (negative) FINs will
be denoted, respectively, by F+ (F− ). Note that a FIN is not a fuzzy set; rather a FIN is an
abstract mathematical notion. The advantage of negative FINs is that convenient algebraic
operations can be defined [7]. An ordering relation has been introduced in the set F of FINs
as follows: F1 ≤ F2 ⇔ F1(h) ≤ F2(h), ∀h ∈ (0, 1]. The following proposition introduces a
metric distance in lattice F.

Proposition 2 Let F1 and F2 be FINs in lattice F. A metric distance function dK : F×F→
R is given by:

dK(F1, F2) =

1∫

0

dh(F1(h), F2(h))dh (4)

Where dh(F1(h), F2(h)) ∈ R+
0 is a metric distance between generalized intervals F1(h) and

F2(h) ∈ F, and
∫

(.) is the conventional integral operator.
In this work the metric distance given by (4) is extended by taking into account the param-
eterized positive valuation function as follows.
Supposing F1(h) = [a, b]h = [ah, bh] and F2(h) = [c, d]h = [ch, dh] (Note that the subscript
notation is used here to highlight that a, b, c, d depend on h ). Taking into account equation
(2) the equation (4) becomes:

dK(F1, F2) =

1∫

0

[f(bh ∨ dh)− f(bh ∧ dh) + f(ah ∨ ch)− f(ah ∧ ch)]dh (5)

3 The grSOM algorithm

Consider a m-input single output (MISO) system and let x = [x1, ..., xj , ..., xm]T be the input
vector, which consists of m-inputs. Suppose that y denotes the output of the system. Also,
let =m,q denote the observed input/output data set comprising q m-input/output observed
patterns: =q =

{
(xk, yk ), k = 1, ..., q

}
. Let =k,` denote a subset of =q which comprises

k out of q data of the input x`. For each subset =q,1,=q,2, · · · ,=q,` a FIN is computed
using algorithm CALFIN [7]. A Self Organizing Map, called grSOM, is proposed on two
dimensional grid of units, each holding a m-dimensional vector of FINs; we compute a metric
distance for m(t) = 1. Algorithm grSOM is shown in Algorithm 1.
The weights Wi,j are initialized using trivial FINs, that is, Wi,j ∈ Rm in the first epoch.
After a user defined number Nepochs of epochs each unit stores a multidimensional FIN, which
represents a local probability distribution function, that corresponds to a specific region of
the input space. Each unit corresponds to a linguistic rule, where the antecedent part is
the FIN stored in the unit and the consequent part is the respective unit’s label. Note
that, the linguistic rules represented by the units may not be fuzzy rules because a FIN
represents a probability distribution rather than a possibility distribution [20]. Note that a
probability distribution could be transformed to a possibility distribution [5]. Nevertheless,
the aforementioned transformation is out of the scope of this paper.
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Algorithm 1 The grSOM algorithm

Step-1: Define the dimensions I and J of a two-dimensional grid of I × J units (neurons). Each
unit can store both a m-dimensional vector (weight) Wi,j , i = 1, ..., I, j = 1, ..., J of FINs and a
category label.

Step-2: Initialize randomly the weight of each unit by a trivial m-dimensional FIN. Repeat steps 3
and 4 below for a user-defined integer number Nepochs of epochs.

Step-3: For each input datum xk ∈ Fm, k = 1, ...,m, do

3.1 Calculate the distance d(xk,Wi,j) between xk and Wi,j , i = 1, ..., I, j = 1, ..., J.

3.2 Competition among the I × J units in the grid: Winner is the unit whose weight is the
nearest to xk.

3.3 Assign input xk to both the winner unit and to all the units in the neighborhood of the
winner.

Step-4: Re-compute the weight Wij , i = 1, ..., I, j = 1, ..., J based on the data assigned to the corre-
sponding unit in Step-3 of the current epoch.

Step-5: To each unit in the grid assign the label of the category, which provided the majority of the
input data to the unit in question during all epochs.

4 A novel training algorithm (mass-grSOM)

Initially, the grSOM [11] is used for performing the structure identification process (input
space partition). Then, a novel training rule is applied for fine tuning the parameters of the
proposed metric distance in a supervised manner as follows:
A Positive Valuation Function (PVF ) fj(x) | j = 1, 2, ...,m of order n = 3 is defined for each
input xj , as folows:

fj(xj) = pj,1 × tanh(
xj − qj,1

rj,1
) + pj,2 × tanh(

xj − qj,2

rj,2
) + pj,3 × tanh(

xj − qj,3

rj,3
) (6)

Accordingly, the metric distance between two one dimensional FINs is defined by:

dj(F1, F2) =

1∫

0

[fj(bh ∨ dh)− fj(bh ∧ dh) + fj(ah ∨ ch)− fj(ah ∧ ch)]dh. (7)

In the case that F2 is a trivial FIN, that is F2(h) = c ∀ h ∈ (0, 1] it holds: [c, d]h = c, c∨ d =
c, c ∧ d = c∀h ∈ (0, 1]. For any number z a trivial FIN could be assigned as follows:
F (h) = z, ∀h ∈ (0, 1]. Selecting the operators ∨,∧ as: e∨f = max(e, f) and e∧f = min(e, f)
where e, f ∈ R equation the metric distance between a FIN and a real number becomes:

dj(F, z) =

1∫

0

[fj(max(bh, z))− fj(min(bh, z)) + fj(max(ah, z))− fj(min(ah, z))]dh. (8)

A m-dimensional FIN F ∈ Mm with m ∈ N∗ coordinates is considered as the cartesian-
product of m one-dimensional FIN, that is F = {F1, .., Fj , .., Fm} where Fj ∈ M+. The
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parameterized metric distance between the m-dimensional FINs F ∈ Mm and the vector
z ∈ Rm, z = {z1, ..., zj , ..., zm} is given by formula:

D(F , z) =
1
m
×

m∑

j=0

dj(Fj , zj)2 (9)

Equation (9) could be used to calculate the distance between an input vector xk ∈ =m,q

and a unit of the I × J grid of grSOM. For each datum xk ∈ Dm,q, the distance from all
units of the grid is calculated using (9). The datum is classified into the category indicated
by the label of the unit, which corresponds to the minimum (metric) distance. For a given
structure of grSOM, the success classification rate, that is the % percent of input/output
patterns which are successfully classified, depends on the value of the adjustable parameters
pi,j , qi,j , ri,j |i = 1, ..., m, j = 1, 2, 3 in (8), (9). The novel training rule could be summarized
in Algorithm 2.

Algorithm 2 The novel training rule by using the proposed parameterized metric distance

Step-1: Apply the grSOM algorithm (Algorithm 1) to locate the linguistic rules that describes the
input/output patterns using the metric distance given by equation (3).

Step-2: Initialize the parameters p, q, r in (6) such that fj(xj) = xj∀j = 1, ..., m.

Step-3: Optimize genetically the values of p, q, r, subject to maximize the classification success rate.

In order to prevent convergence to local minima, a genetic algorithm is employed to optimize
the values of the adjustable parameters p, q, r so as to maximize the success classification
rate. For each input variable xj , the respective positive valuation function fj involves nine
adjustable parameters. For m input variables (attributes in classification literature) 9m ad-
justable parameters are binary encoded, each uses 16 bits, to constitute the chromosome
of each individual. The fitness function, is the success classification rate, achieved by gr-
SOM, when the parameters obtain the values encoded into the chromosome of the individual.
The genetic algorithm includes elitism, roulette wheel selection for reproduction, multi-point
crossover-mutation and adaptive crossover-mutation rates. Moreover, the genetic optimiza-
tion scheme is enhanced by specific operators such as hill-climbing, the ASER/RSCS [12] and
the microgenetic algorithm [9]. The evolution ends when the fitness of the elite individual is
not further improved for a consecutive number of 20 generations.

5 Experimental results

We carried out experiments on the Fisher IRIS benchmark. This benchmark data set com-
prises four inputs that represent measured attributes of a crinum family such as x1:sepal-
length, x2:sepal-width, x3:petal-length, x4:petal-width. The flowers are classified into three
classes (Iris versicolor(class-1), Iris sestosa (class-2), Iris virginica (class-3)) represented by
an integer number from 1 to 3. The data set consists of 150 input-output data points. Each
attribute is normalized in the range [0, 1].
Ten data sets were created, by reshuffling randomly the initial data set. For each data set
the first 80% =120 data points were used, first, for linguistic rule extraction using algorithm
grSOM and second using algorithm mass-grSOM. The rest 20%=30 data points were used for
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testing the classification performance of any algorithm. For comparative reasons Kohonen’s
SOM namely Crisp SOM, was also implemented. In all cases a 4× 4 grid of units was used
for i) Nephocs = 10, 000 for crisp SOM and ii) Nephocs = 100 for grSOM. In each case the
average success classification rate over the ten data sets, are summarized in Table 1.
Further experiments were carried out using a different partition of input/output patterns:
60%=90 data points were used for training and 40%=60 data points for testing. The average
success classification rate over the ten data sets, are summarized in Table 2.

Table 1: Iris classification benchmark 80% for training - 20% for testing

Algorithm Training Set Testing Set Rules
Average std Average std Average std

Crisp SOM 92.1 4.1 92.3 4.7 16 0.0
grSOM 93.3 1.5 93.8 2.1 10 1.3

mass-grSOM 95.7 0.8 95.5 1.3 10 1.3

Table 2: Iris classification benchmark 60% for training - 40% for testing

Algorithm Training Set Testing Set Rules
Average std Average std Average std

Crisp SOM 92.4 4.5 91.1 5.2 16 0.0
grSOM 94.3 1.5 94.1 2.3 8 1.5

mass-grSOM 96.6 1.2 96.3 1.2 8 1.5

From the experimental results it follows that the grSOM is better than Crisp SOM, while
mass-grSOM is better than grSOM. Hence, genetically optimized mass functions improve
classification accuracy. Moreover, the Crisp SOM requires more rules/nodes in the grid.
Finally note that the difference between Training/Testing set is not statistically significant.

6 Conclusions and future work

An novel self organizing map, namely mass-grSOM, was presented in this work using a novel
parameterized metric distance function. The mass-grSOM operates using SOM principles
extended to the metric space of Fuzzy Interval Numbers (FINs). A FIN has been inter-
preted here statistically as a local probability density function. The mass-grSOM algorithm
allows fine tuning, without distorting the statistical interpretation of the input space. The
efficiency of mass-grSOM algorithm was demonstrated experimentally in a benchmark clas-
sification problem. Future work includes the application of mass-grSOM on larger real-world
classification problems in the industry of phosphoric fertilizers.
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