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Abstract - We introduce a batch variant of the neural gas (NG) clustering algorithm which
optimizes the same cost function as NG but shows faster convergence. It has the additional
benefit that, based on the notion of the generalized median, a variant for non-vectorial prox-
imity data can be introduced in analogy to the median self-organizing map (SOM). We discuss
convergence of batch and median NG and demonstrate its behaviour in experiments.
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1 Introduction

Clustering constitutes a fundamental problem in various fields such as pattern recognition,
image processing, or machine learning [17]. Often, the goal is to represent data by a small
number of representative prototypes. Popular algorithms related to neural networks include
k-means, the self-organizing map (SOM), neural gas (NG), and alternatives [8, 19]. K-means
clustering directly aims at a minimization of the quantization error [4]. However, its update
scheme is local such that it easily gets stuck in local optima. Neighborhood cooperation as
for SOM and NG offers one biologically plausible solution. Apart from a reduction of the
influence of initialization, additional semantical insight is gained: browsing within the map
and, if a prior low dimensional lattice is chosen, data visualization. NG optimizes a cost
function which, as a limit case, yields the quantization error [15]. SOM, on the contrary,
possesses a cost function in the continuous case only for a variation of the original learning
rule [6, 12]. In addition, a prior lattice might be suboptimal for a given task [22].

There exist mainly two different optimization schemes for these objectives: online variants,
which adapt the prototypes after each pattern, and batch variants which adapt the prototypes
according to all patterns at once. Batch approaches are much faster, since only one adaptation
is necessary in each cycle and convergence can usually be observed after few steps. However,
topological ordering of SOM might be destroyed as shown in [9] such that a good initialization
is necessary. Batch variants are often taken for SOM or k-means if data are available a priori.
For NG, we derive a batch version and show convergence in this contribution.

In a variety of tasks such as classification of protein structures, documents, surveys, or biolog-
ical signals, an explicit metric structure such as the euclidean metric is not available, rather
only the proximity of data points is given [7, 10, 20]. In such cases, a clustering method which
does not rely on a vector space has to be applied such as spectral clustering [1]. Several alter-
natives to SOM have been proposed which can deal with more general, mostly discrete data
[7, 10, 20]. The article [14] proposes a particularly simple possibility for proximity data: the
mean value of the batch SOM is substituted by the generalized median. Naturally, the same
idea can be transferred to batch NG and k-means as we will demonstrate in this contribution.
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2 Neural gas

Assume data points ~x ∈ R
m are distributed according to P , the goal of NG as introduced in

[15] is to find prototype locations ~wi ∈ R
m, i = 1, . . . , n, such that these prototypes represent

the distribution P as accurately as possible, minimizing the cost function

ENG(~w) =
1

2C(λ)

n
∑

i=1

∫

hλ(ki(~x, ~w)) · d(~x, ~wi)P (d~x)

where d(~x, ~y) = (~x−~y)2 denotes the squared euclidean distance, ki(~x, ~w) = |{~wj |d(~x, ~wj)2 <
d(~x, ~wi)}| is the rank of the prototypes sorted according to the distances, hλ(t) = exp(−t/λ)
is a Gaussian shaped curve with neighborhood range λ > 0, and C(λ) is the constant
∑

n

i=1 hλ(ki). The learning rule consists of a stochastic gradient descent, yielding ∆~w i =
ε ·hλ(ki(~x

j , ~w)) · (~xj − ~wi) for all ~wi given ~xj. Thereby, the neighborhood range λ is decreased
during training to ensure independence of initialization and optimization of the quantization
error. As pointed out in [16], the result can be associated with a data optimum lattice.
NG is a simple and highly effective algorithm for data clustering. Popular alternative cluster-
ing algorithms are offered by the SOM as introduced by Kohonen [13] and k-means clustering
[8]. SOM uses the adaptation strength hλ(nd (I(~xj), i)) instead of hλ(ki(~x

j, ~w)), I(~xj) de-
noting the index of the closest prototype, the winner, for ~xj, and nd a priorly chosen, often
two-dimensional neighborhood structure of the neurons. A low-dimensional lattice offers the
possibility to visualize data. However, if the primary goal is clustering, a fixed topology puts
restrictions on the map and topology preservation often cannot be achieved [22]. SOM does
not possess a cost function in the continuous case and its mathematical investigation is dif-
ficult [6]. However, if the winner is chosen as the neuron i with minimum averaged distance
∑

n

l=1 hλ(nd(i, l))d(~xj , ~wl), it optimizes the cost term

ESOM(~w) ∼
n

∑

i=1

∫

χI∗(~x)(i) ·
n

∑

l=1

hλ(nd(i, l)) · d(~x, ~wl)P (d~x)

as pointed out by Heskes [12]. Here, I∗(~x) denotes the winner index according to the averaged
distance and χj(i) is the characteristic function of j. K-means clustering adapts only the
winner in each step, thus is optimizes the standard quantization error

Ekmeans(~w) ∼
n

∑

i=1

∫

χI(~x)(i) · d(~x, ~wi)P (d~x)

where I(~x) denotes the winner index for ~x in the classical sense. Since a data point influences
only the closest prototype at each adaptation step, k-means is very sensitive to initialization.

2.1 Batch clustering

If training data ~x1, . . . , ~xp are given priorly, fast alternative batch training schemes exist
for k-means and SOM. Starting from random positions of the prototypes, batch learning
iteratively perform the following two steps

(1) determine the winner I(~xi) resp. I∗(~xi) for each data point ~xi,

(2) determine new prototypes as ~wi =
∑

j | I(~xj)=i
~xj/|{j | I(~xj) = i}| for k-means and ~wi =

∑

p

j=1 hλ(nd(I∗(~xj), i)) · ~xj/
∑

p

j=1 hλ(nd(I∗(~xj), i)) for SOM.
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It has been shown in [4, 5] that batch k-means resp. batch SOM optimize the same cost
functions as their online variants, whereby the generalized winner notation is used for SOM.
In addition, as pointed out in [12], this formulation allows to link the models to statistical
formulations and it can be interpreted as a limit case of EM optimization schemes for appro-
priate mixture models. Often, batch training converges after only few (10-100) cycles such
that this training mode offers considerable speedup in comparison to the online variants.
Here, we introduce a batch variant of NG. As for SOM and k-means, it can be derived from
the cost function of NG, which, for discrete data ~x1, . . . , ~xp, reads as

ENG(~w) ∼

n
∑

i=1

p
∑

j=1

hλ(ki(~x
j , ~w)) · d(~xj , ~wi) .

For the batch algorithm, the quantities kij := ki(~x
j , ~w) are treated as hidden variables with

the constraint that the values kij (i = 1, . . . , n) constitute a permutation of {0, . . . , n−1} for
each point ~xj. ENG is interpreted as a function depending on ~w and kij which is optimized in
turn with respect to the hidden variables kij and with respect to the prototypes ~wi, yielding
the two adaptation steps of batch NG:

1. determine kij = ki(~x
j , ~w) = |{~wl | d(~xj , ~wl) < d(~xj , ~wi)}| as the rank of prototype ~wi,

2. based on the hidden variables kij , set

~wi =

∑

p

j=1 hλ(kij) · ~x
j

∑

p

j=1 hλ(kij)
.

Before proceeding to a generalization to proximity data, we unify the notation for the batch
versions of NG, SOM, and batch NG. In the discrete setting, these three models optimize a
cost function of the form

E :=

n
∑

i=1

p
∑

j=1

f1(kij(~w)) · f ij

2 (~w)

where f1(kij(~w)) is the characteristic function of the winner, χI(~xj)(i) resp. χI∗(~xj)(i), for

k-means and SOM, and it is hλ(ki(~x
j , ~w)) for neural gas. f ij

2 (~w) equals the distance d(~xi, ~wj)

for k-means and NG, and it is the averaged distance
∑

n

l=1 hλ(nd(i, l)) · d(~xj , ~wl) for SOM.
The batch algorithms optimize E with respect to kij in step (1) assuming fixed ~w. Thereby,
for each j, the vector kij (i = 1, . . . , n) is restricted to a vector with exactly one entry 1 and
0, otherwise, for k-means and SOM and it is restricted to a permutation of {0, . . . , n− 1} for
NG. Thus, the elements kij come from a discrete set which we denote by K. In step (2), E is
optimized with respect to ~wj assuming fixed kij . The update formulas as introduced above

can be derived by taking the derivative of f ij

2 with respect to ~w.

2.2 Median clustering

For proximity data ~x1, . . . , ~xn, only the distance matrix dij := d(~xi, ~xj) is available but
data are not embedded in a vector space. A solution proposed by Kohonen and Somervuo
for batch-SOM is based on the notion of the generalized median [14]: prototypes are chosen
from the discrete set given by the training points X = {~x1, . . . , ~xp} in an optimum way.
Thus, E is optimized within Xn instead of (Rm)n, choosing ~wi in step (2) as ~wi = ~xl where

l = argminl′

∑

p

j=1 hλ(nd(I∗(~xj), i)) · d(~xj , ~xl′). In [14], Kohonen considers only the data
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points mapped to a neighborhood of neuron i as potential candidates for ~w i and, in addition,
reduces the above sum to points mapped into a neighborhood of i. For small neighborhood
range and approximately ordered maps, this does not change the result.
The same principle can be applied to k-means and batch NG. In step (2), instead of taking
the vectors in (Rm)n which minimize E, prototype i is chosen in X as

~wi = ~xl where l = argminl′

p
∑

j=1

χI(~xj)(l) · d(~xj , ~xl′)

assuming fixed χI(~xj)(l) for k-means and

~wi = ~xl where l = argminl′

p
∑

j=1

hλ(kij) · d(~xj , ~xl′)

assuming fixed kij = ki(~x
j, ~w). For roughly ordered maps, a restriction of potential candidates

~xl to data points mapped to a neighborhood of i can speed up training as for median SOM.

2.3 Convergence

These algorithms optimize E = E(~w) by consecutive optimization of the hidden variables
kij(~w) and ~w. We can assume that, for given ~w, the values kij determined by the above
algorithms are unique, introducing some order in case of ties. Note that the values kij

come from a discrete set K. If kij are fixed, the choice of the optimum ~w is unique in the
algorithms for the continuous case, as is obvious from the formulas given above, and we can
assume uniqueness for the median variants by introducing an order. Consider the function

Q(~w′, ~w) =
n

∑

i=1

p
∑

j=1

f1(kij(~w)) · f ij

2 (~w′) .

Note that E(~w) = Q(~w, ~w). Assume prototypes ~w are given, and new prototypes ~w ′ are
computed based on kij(~w) using one of the above batch or median algorithms. It holds
E(~w′) = Q(~w′, ~w′) ≤ Q(~w′, ~w) because kij(~w′) are optimum assignments for kij in E, given
~w′. In addition, Q(~w′, ~w) ≤ Q(~w, ~w) = E(~w) because ~w′ are optimum assignments of the
prototypes given kij(~w). Thus, E(~w′) − E(~w) = E(~w′) − Q(~w′, ~w) + Q(~w′, ~w) − E(~w) ≤ 0,
i.e., in each step of the algorithms, E is decreased. Since there exists only a finite number
of different values kij and the assignments are unique, the algorithms converge in a finite
number of steps toward a fixed point ~w∗ for which (~w∗)′ = ~w∗ holds.
Consider the case of continuous ~w. Since kij are discrete, kij(~w) is constant in a vicinity of
~w∗ if no data points lie at the borders of two receptive fields. Then E(·) and Q(·, ~w∗) are
identical in a neighborhood of ~w∗ and thus, a local optimum of Q is also a local optimum of
E. Therefore, in the continuous case, if no data points are directly located at the borders of
receptive fields, the batch algorithms converge to a local optimum of E.

3 Experiments

All algorithms have been implemented based on the SOM Toolbox for Matlab [18]. We
used k-means, SOM, batch-SOM, and NG with default parameters. Batch NG and median
versions of NG, SOM, and k-means have been implemented using the above formulas. Since
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Figure 1: Mean quantization error of the methods for the synthetic data set (left) and the
segmentation data set (right).

prototypes can easily become identical due to a limited number of different positions for the
median versions, a small amount of noise has been added in each epoch. Vectorial training
sets are normalized prior to training using z-transformation. Initialization of prototypes takes
place using small random values. The initial neighborhood rate for neural gas is λ = n/2,
n being the number of neurons, and it is is multiplicatively decreased during training. For
median SOM, we restrict to square lattices of n =

√
n ×

√
n neurons and a rectangular

neighborhood structure. Here the initial neighborhood rate is
√

n/2.

3.1 Synthetic data

The first data set is the two-dimensional synthetic data set from [19] consisting of 250 data
points and 1000 training points. Clustering has been done using n = 2, . . . , 25 prototypes,
resp. the closest number of prototypes implemented by a rectangular lattice for SOM, train-
ing for 5n epochs. The mean quantization error

∑

n

i=1

∑

p

j=1 χI(~xj)(i) · d(~xj , ~wi)/p on the test

set and the location of prototypes within the training set are depicted in Figs. 1(left) and
2. Obviously, the location of prototypes coincides for different versions of NG. This observa-
tion also holds for different numbers of prototypes, whereby the result is subject to random
fluctuations for larger numbers. For k-means, idle prototypes can be observed for large n.
For batch-SOM and SOM, the quantization error is worse (ranging from 1.7 for 2 neurons
up to 0.3 for 24 neurons), which can be attributed to the fact that the map does not fully
unfold upon the data set and edge effects remain. Median SOM (which has been directly
implemented in analogy to median NG) yields a quantization error competitive to NG. Thus,
batch and median NG allow to achieve results competitive to NG, however, using less effort.

3.2 Segmentation data

The segmentation data set from UCI consists of 210 (training set) resp. 2100 (test set) 19
dimensional data points which are obtained as pixels from outdoor images preprocessed by
standard filters such as averaging, saturation, intensity, etc. The problem is interesting since
it contains high dimensional and only sparsely covered data. The quantization error obtained
for the test set is depicted in Fig. 1(right). As beforehand, SOM suffers from the restriction
of the topology. Neural gas yields very robust behavior, whereas for k-means, idle prototypes
can be observed. The median versions yield a larger quantization error compared to the
vector-based algorithms. The reason lies in the fact that a high dimensional data set with
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Figure 2: Prototype locations (6 resp. 12) for the synthetic data set and different NG variants.

only few training patterns is considered, such that the search space for median algorithms is
small in these cases and random effects and restrictions account for the increased error.

3.3 Checkerboard

This data set is taken from [11]. Two-dimensional data are arranged on a checkerboard,
resulting in 10 times 10 clusters, each consisting of 15 to 20 points. For each algorithm, we
train 5 times 100 epochs for 100 prototypes. Obviously, the problem is highly multimodal
and, usually the algorithms do not find all clusters. The number of missed clusters can easily
be judged in the following way: the clusters are labeled consecutively using labels 1 and 2.
prototypes are labeled a posteriori based on a majority vote on the training set. The number
of errors which arise from this classification on an independent test set count the number of
missed clusters, since 1% error roughly corresponds to one missed cluster.

The results are collected in Tab. 1. The smallest quantization error is obtained by batch
NG, the smallest classification error can be found for median SOM. As beforehand, the
implementations for SOM and batch SOM do not fully unfold the map among the data. In
the same way the online NG does not achieve a small error because of the restricted number
of epochs. K-means also shows a quite high error (it misses more than 10 clusters) which can
be explained by the existence of multiple local optima. In contrast, batch NG and median NG
find all but 3 to 4 clusters. Median SOM even finds all but only 1 or 2 clusters. Surprisingly,
also median k-means shows quite good behaviour, unlike k-means itself, which might be due
to the fact that the generalized medians enforce the prototypes to settle within the clusters.

NG batch median SOM batch median kmeans median
NG NG SOM SOM kmeans

quantization error
train 0.0043 0.0028 0.0043 0.0127 0.0126 0.0040 0.0043 0.0046
test 0.0051 0.0033 0.0048 0.0125 0.0124 0.0043 0.0050 0.0052

classification error
train 0.1032 0.0330 0.0338 0.2744 0.2770 0.0088 0.1136 0.0464
test 0.1207 0.0426 0.0473 0.2944 0.2926 0.0111 0.1376 0.0606

Table 1: Quantization error and classification error for posterior labeling for training and
test set (both are of size about 1800). The mean over 5 runs is reported.
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Figure 3: Distance matrix for protein data (upper left). Typical results for median classifica-
tion and 10 prototypes. The x-axes shows the protein number, the y-axes its winner neuron.
The vertical lines indicate an expert classification into different protein families (from left to
right: hemoglobin α, β, δ, ε, γ, F, myoglobin, others).

3.4 Proximity data

We take the data set from [21] and [20]: the dissimilarity of 145 globin proteins of different
families is given in matrix form. The matrix is determined based on sequence alignment using
biochemical and structural information, as depicted in Fig. 3.

We train 10 times using 10 prototypes and 500 epochs. The mean quantization errors (and
variances) are 3.7151 (0.0032) for median neural gas, 3.7236 (0.0026) for median SOM, and
4.5450 (0.0) for median k-means, thus k-means yields worse results compared to NG and
SOM. Typical clustering results are depicted in Fig. 3. A classification provided by experts
is indicated by vertical lines in the images. Thereby, the last elements also have a large
intercluster distance such that they are grouped together into some (random) cluster for all
methods. All methods detect the first cluster (hemoglobin α) and neural gas and SOM also
detect the eighth cluster (myoglobin). In addition, SOM and NG group together elements of
clusters two to seven in a reasonable sense. Thereby, according to the variance in the clusters,
more than one prototype is used for one cluster. Note that the goal of NG and SOM is a
minimization of their underlying cost function, such that the border can lie between semantic
clusters for these methods. Thus, the results obtained by SOM and NG are reasonable
and they detect several semantically meaningful clusters. This formation of clusters is also
supported when training with a different number of prototypes (not shown here.)
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4 Conclusions

We have proposed a batch variant of NG which allows fast training for a priorly given data set
and a transfer to proximity data. We have shown that the method converges and it optimizes
the same cost function as NG. This theoretical finding was supported by experiments for
vectorial data where the results of batch NG and NG are very similar. Unlike k-means, NG is
not sensitive to initialization and, unlike SOM, it automatically determines a data optimum
lattice, such that a small quantization error can be achieved and topological initialization
is not crucial. Median NG restricts the adaptation to locations within the data set such
that it can be applied to non-vectorial data. We compared median NG to its alternatives for
vectorial data observing that competitive results arise if enough data are available. We added
one experiment including proximity data where we could obtain semantically meaningful
grouping. In general, median SOM and median NG both seem to perform well provided
enough data, and, in case of SOM, matching data topology and appropriate initialization
[9, 22]. Unlike SOM, NG solely aims at data clustering and not data visualization, such
that it can use a data optimum lattice and it is not restricted by topological constraints. If
a visualization of the output of NG is desired, a subsequent visualization of the prototype
vectors is possible also in the non-vectorial case using e.g. multidimensional scaling [3].
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