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Abstract - Self Organizing Maps (SOM) are often applied to the visualization of high
dimensional data. The primary source of information to this aim is the (symmetric) distance
data matriz. However, there are many interesting problems in which distances or proximities
are inherently asymmetric.

In this paper we extend the SOM algorithm to deal successfully with asymmetric relations.
The new models are tested on the challenging problem of word relation visualization using real
datasets. The experimental results show that the asymmetric variants proposed outperform
the original SOM algorithm.
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1 Introduction

Self Organizing Maps (SOM) [10] are non-linear visualization techniques helpful to discover
meaningful relationships in multivariate data sets. They have been applied to a wide range
of applications including text mining problems [11, 15]. Several variants of the original SOM
algorithm have been proposed in the literature [10, 18] but usually they rely on the use
of symmetric measures such as the Euclidean. Therefore they are not expected to handle
asymmetric relations appropriately.

However, there are a number of relevant applications such as text mining in which relations
are inherently asymmetric. Consider for instance the problem of word relation visualization.
The relation between a broad term such as ‘statistics’ and a specific term like ‘bayesian’ is
asymmetric in the sense that ‘statistics’ subsumes the semantic meaning of ‘bayesian’ but not
conversely. In this case, a symmetric similarity would suggest that ‘statistics’ is hardly related
to ‘bayesian’ which is not true [13, 17]. Therefore new dissimilarities should be proposed that
reflect more accurately this kind of proximities.

Some Multidimensional Scaling (MDS) algorithms have been proposed to deal with asym-
metric measures (see for instance [6, 21] and references therein). However, these algorithms
derive the object proximities considering only the symmetric component of the similarity
matrix, losing important information about the data set (see [14] for details).
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In this paper we start from an interesting case in text mining to motivate the main ideas of
the paper: we first study the impact of asymmetry over the quality of the textual maps and
present new dissimilarities that are less sensitive to this problem. Next new versions of the
SOM algorithm are proposed that incorporate the new dissimilarities keeping the simplicity
of the original SOM. The derivation of the algorithms from an energy function provides a
theoretical foundation for the new models. Finally, the algorithms proposed are tested on
the interesting problem of word relation visualization.

This paper is organized as follows. In section 2 we study the problem of asymmetry. Section 3
proposes new versions of the SOM algorithm that are able to deal with asymmetric relations.
In section 4 the new algorithms are tested using two real textual collections. Finally section
5 gets conclusions and outlines future research trends.

2 Asymmetry

In this section we study the effect that the asymmetry has on visualization algorithms based
on symmetric distances. Next the relation between asymmetry and the L; norm is established.
Finally the meaning and relevance of asymmetry in the field of textual data analysis is
discussed.

Consider a set of n objects and let S = (s;;) be the similarity matrix made up of object
proximities. If a dissimilarity matrix (d;;) is given instead it can be transformed easily into a
similarity using any of the transformations provided in [6] (s;j; = 1 — 6;;). Asymmetry arises
when s;; # s;;. In this case the dissimilarity matrix can be decomposed into a symmetric
and skew-symmetric component (S = M + A) [21] where m;; = (s;5 + sj5)/2 and a;; =
(sij—s4i)/2. The first term represents the object proximities and the second one the deviation
from symmetry (it equals 0 if S is symmetric).

When asymmetry arises the symmetric similarities usually considered in the literature pro-
duce often too small values and fail to reflect the object proximities [17, 14]. To get a deeper
insight into this problem we are going to study a text mining example.

Consider a collection of scientific papers where, the broad term ‘statistics’ appears for ins-
tance in 500 documents while the more specific term ‘bayesian’ appears only in a subset of 10
documents. Obviously, the relation between ‘statistics’ and ‘bayesian’ is highly asymmetric
in the sense that ‘statistics’ subsumes the semantic meaning of ‘bayesian’ but not conversely.

Consider now a symmetric similarity such as the cosine that has been widely used in the
information retrieval literature [19, 5]. This measure is equivalent to the Euclidean distance
(commonly used by SOM algorithms) if the objects are normalized previously by the Lo
norm. Moreover, the cosine similarity represents somewhat the behavior of a broad range of
symmetric similarities over textual data [5, 14].

Now, if the cosine similarity is computed for the example considered above we get a value of
0.14 which is close to 0. This would suggest that ‘statistics’ is hardly related to ‘bayesian’,
which is not true. Notice that other distances such as the y? [12] are similarly affected by
the same problem [5].

The previous example suggests that commonly used symmetric similarities become meaning-
less (too small) when asymmetry grows large. Moreover, this bias toward small values tends
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to reduce the variance of the similarity histogram. In particular, the cosine similarity has a
standard deviation as low as 0.03 for the datasets considered in this paper. Consequently, the
similarities become almost constant over textual data and any algorithm based on distances
will be highly distorted [4].

Next we interpret the asymmetry in terms of the object L norm.

Let Z; be the vector space representation [2] of term 7 and |%;| the L; norm which is propor-
tional to the term frequency in the database. Consider a similarity such as the fuzzy logic
defined as:

Sij = ﬁ (1)

where A denotes the standard fuzzy logic intersection and || the L; norm. Obviously this
similarity is asymmetric and the skew-symmetric component can be written as:

aij oc| i | — | Zi | - (2)

This equation suggests that the asymmetry is a property associated to individual objects and
may be modeled by the following coefficient of asymmetry: w; = ma‘):j\|§:'k\' In the context of
text mining this coefficient will become large for broad terms that appear in a wide range of

documents.

The previous equation shows that the asymmetry becomes large just for relations between
broad terms (large L; norm) and specific terms (small L; norm). Therefore, the asymmetry
will be an important factor in many applications such as text mining in which the L; norm
obeys a Zipf’s law [2]. In this case the L; norm histogram is very skew and a;; will become
large quite often.

In addition it has been pointed out in [1] that for sparse databases such as textual datasets,
the relation among specific (low norm) terms can only be established through relations with
related broader terms. Therefore if this kind of asymmetric relations are underestimated, the
position of specific terms in the map will become meaningless. To avoid this problem the
proximities corresponding to asymmetric relations should be compensated proportionally to
the degree of asymmetry (a;;) as we will see in the next section.

3 Asymmetric variants of Self Organizing Maps

In this section we first introduce shortly the SOM algorithm proposed originally by [10].
Next we propose two asymmetric variants that take advantage of the asymmetry to reflect
accurately the object proximities. Finally a brief remark about related work is given.

The SOM [10] is a nonlinear visualization technique for high dimensional data. Input vectors
are represented by neurons arranged according to a regular grid (usually 1D-2D) in such a
way that similar vectors in input space become spatially close in the grid.

From a practical point of view the SOM is equivalent to the algorithm resulting from the
optimization of the following quantization error [18]:

EW) = Z Z ZhrsD(fwws)a (3)

r xMGVT S
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where D denotes the square Euclidean distance and V,. is the Voronoi region corresponding to
prototype w,. h,s is a neighborhood function (for instance a Gaussian kernel) that transforms
nonlinearly the neuron distances (see [10] for other possible choices). The kernel width is
adapted in each iteration and determines the degree of smoothing of the principal curve
[16]. The error function (3) is minimized when objects that are close together in input space
(according to the Euclidean distance) are mapped to neighboring neurons in the grid.
Notice that the error function proposed by Heskes [18] assumes that the Voronoi regions are
computed considering the distance D(Z,w,) = Y, hysD(Z,,ws). If the Euclidean distance
is considered instead, the derivation of the SOM algorithm from an error function is only
possible for the discrete case.

The SOM energy function may be optimized by an iterative algorithm made up of two steps
[18]. First a quantization algorithm is run that represents each pattern by the nearest neigh-
bor prototype. Next, the prototypes are organized along the grid of neurons by minimizing
the error function (3). The optimization problem can be solved explicitly resulting in a simple
iterative adaptation rule for each prototype [10].

Next, two asymmetric variants of the original SOM are proposed. The goal of the new models
is to improve particularly the position of the more specific terms (low L; norm). To this aim, a
new asymimetric similarity based on the Euclidean distance is defined that reflects accurately
the proximities among specific and broader terms (corresponding to asymmetric relations).
Next an energy function which incorporates the asymmetric similarity is introduced. Finally
the error function is optimized keeping the simplicity of the original algorithm.

Let d(7;,%;) = ||Z; — #j||* be the square Euclidean distance usually considered in the Self
Organizing Maps. This dissimilarity can be easily transformed into a similarity [21, 6] using
for instance the following transformation: s;; = K — ||#; — 7,||?, where the constant K is
an upper bound for the square Euclidean distances. Now an asymmetric index is defined as
follows:

sij = (K = | & — &}, (4)
where w; denotes the asymmetry coefficient defined in section 2. The object proximities
induced by the symmetric component of s;; have now the following form:
w; + wj
_— 5

. (5)
When the object relations are highly asymmetric then w; > w; or conversely. In this case the
similarity (5) compensates the value of the Euclidean proximity proportionally to the degree
of asymmetry defined by equation (2). This can be easily seen considering that the degree of

asymmetry is proportional to |w; — w;| (see section 2) and under the above conditions it can
be approximated by max(w;,w;) = w; + wj.

s = (K — |17 — &)

Obviously, the equation (5) compensates only the similarities between related terms such as
for instance ’statistics’ and 'bayesian’ because the Euclidean proximity is not zero. Otherwise,
the similarities between unrelated terms such as ’statistics’ and 'petal’ will remain unaltered
because the Euclidean proximity is zero in this case.

Substituting the similarity (5) into equation (3) the error function for the asymmetric SOM
can be written as:
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EW) =) > > heswu(K — |8 — @s%). (6)

T oxu€Vy S

As we have mentioned earlier, this asymmetric error decomposes into a symmetric component
that represents the object proximities and a skew-symmetric component that represents the
deviation from symmetry. The skew-symmetric component can be neglected in this case
because the sum of the non-diagonal elements of a skew-symmetric matrix equals 0 [21]. In the
new error function the Euclidean proximities in input space are compensated proportionally
to the degree of asymmetry (w,). Therefore the corresponding distances along the grid of
neurons will shrink reflecting more accurately the object proximities.

The error function (6) can be optimized in two steps as in the symmetric case. First a
quantization algorithm is run that generates the SOM prototypes w,. Next the function
error is maximized with respect to the weights w,. This yields a simple adaptation rule for
the network prototypes:

M
E g wphys Ty,
r=1z,eV;

Ty = (7)

M
> D wahrs

r=1gz,eV;

where h,s is a Gaussian kernel of parameter o(t) which is adapted using the same rules
considered for the symmetric version. Notice that the the simplicity of the original SOM
algorithm is maintained.

The SOM algorithm proposed earlier improves particularly the associations induced among
objects of disparate L; norm (asymmetrically related). However, according to equation (5)
the objects of large and similar L; norm get also closer in the grid of neurons. This behavior
may eventually increase the overlapping among the main topics of the database which is an
undesirable effect. To avoid this problem an alternative similarity is defined as follows:

sij = (K — |8 — Z*)[1 + (wi — wj)?], (8)

where w;, w; denote the asymmetry coefficients defined in section 2. This similarity becomes
larger than the Euclidean proximity measure just when (w; # w;). In this case, the simila-
rity is compensated proportionally to the degree of asymmetry |w; — w;|. Substituting this
similarity into equation (3) we get the error function to be optimized:

EW) =) > > hes(K = [|T = @)1+ (| £ | — | s )] (9)

T oxu€eVr S

The optimization of this error is quite complex, because the parameter | @, | depends on
the prototype coordinates. To overcome this problem, the dataset is first transformed to a
feature space via the function ¢ : RP — F defined as follows: ¢(Z) = (Z,|Z]). In this feature
space, the optimization is easier because the error function (9) can be derived independently
with respect to the prototype and the L; norm coordinates. Using this trick and solving the
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set of linear equations 65%\‘}) = 0, we get the following updating rule for the prototype L1
norm coordinate:
DD st |3
. T x,€Vp
|y | =~ . (10)
2. D hescls
T z,EV,

where ), = (K — ||, — ;s |?) and h,¢ is a Gaussian kernel defined as usual. Similarly, solving
the set of linear equations 8}378?}) = 0, we get the following updating rule for the network
prototypes:

ST el 4 (1 E | - | )]

T z,€V,

TS bt (F |~ | )

T z,EV,

—

Ws

(11)

In the las years several authors (see for instance [8, 7]) have proposed new variants of the
SOM algorithm that are able to work directly from a (symmetric) dissimilarity matrix. In
previous papers [14, 13] we have reported that usual mapping algorithms that works from
a dissimilarity matrix such as Sammon, can be extended to the asymmetric case using a
procedure similar to the one employed here. This suggests that the algorithms mentioned
above can be extended to the asymmetric case, just substituting in (4) the Euclidean distance
by the corresponding dissimilarity matrix and considering that the coefficient of asymmetry
can be defined easily for a given asymmetric measure [14]. However, notice that the SOM
algorithms based exclusively on distances are usually more intensive computationally.

We finish this section with a brief comment about the related work.

As far as we know, no asymmetric version of the SOM has been proposed earlier in the
literature. However, the multidimensional scaling (MDS) community have proposed several
models to deal with asymmetric measures in the context of psychometric or sociometric
data (see for instance [6, 21] and references). Those algorithms optimize a quadratic error
measure of the form ), j(5ij — d;;)?, where 6;; and d;; denote the asymmetric dissimilarities
in input and output spaces. However, it has been pointed out in the literature [21, 14] that
the optimization of this error function is equivalent to build two maps that approximate
independently the symmetric and skew symmetric components of the dissimilarity matrix
(0i5). Therefore the map that visualizes the object proximities is exclusively derived from the
symmetric component of d;; and is degraded by asymmetry as well. Thus, the contribution of
the work presented here is to improve the map that visualizes the object proximities taking
advantage of the information conveyed by the asymmetry.

4 Experimental results

In this section we apply the proposed algorithms to the construction of word maps that
visualize term semantic relations. First we describe briefly the textual collections used in the
experiments.

The first collection, is made up of 2000 scientific abstracts retrieved from three commercial
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databases ‘LISA’, INSPEC’ and ‘Sociological Abstracts’. A thesaurus created by human
experts is available which allow us to exhaustively check the term associations created by the
SOM algorithms. The second collection is made up of 6702 abstracts corresponding to the
journals of the ACM digital library. In this case, no thesaurus is available for the collection
and therefore the evaluation must rely on unsupervised measures. This a real and interesting
problem not previously considered in the literature.

Assessing the performance of algorithms that generate word maps is not an easy task. In this
paper the maps are evaluated from different viewpoints through several objective functions.
This methodology guaranty the objectivity and validity of the experimental results.

The first measure considered is the Spearman rank correlation coefficient [3] (Sp.). This
coefficient checks if the neighbor’s ordering in input space is preserved in the map. A comple-
mentary measure is the Sp. coefficient taking into account only the 10% of the first nearest
neighbors. Notice that the first nearest neighbors of specific terms are frequently broad terms
[17, 13]. Therefore, this index provides more specific information about the preservation of
dissimilarities corresponding to asymmetric relations.

The second group of measures quantifies the agreement between the semantic word classes
induced by the map and the thesaurus. Therefore, once the objects have been mapped, they
are grouped into topics with a clustering algorithm (for instance PAM [9]). Next the partition
induced by the map is evaluated through the following objective measures:

The F measure [2] has been widely used by the Information Retrieval community and eval-
uates if words from the same class according to the thesaurus are clustered together. The
entropy measure [17] evaluates the uncertainty for the classification of words from the same
cluster. Small values suggest that the clusters are tight and so the overlapping among differ-
ent topics in the map is smaller. Finally the Mutual Information [20] is a nonlinear correlation
measure between the word classification induced by the thesaurus and the word classification
given by the clustering algorithm. This measure gives more weight to specific words and
therefore provides valuable information about changes in the position of specific terms.

Scientific abstracts ACM corpus
Sp. Sp. 10% | F E I Sp. Sp. 10%

‘ U Symmetric SOM 0.43 0.64 0.70 0.38 0.23 | 0.43 0.74

2 Asymmetric SOM 0.57 0.76 0.78 0.35 0.27 | 0.51 0.76

Improvement in % 33 16 11 8 17 19 3

3 Asymmetric SOM (L norm differ- | 0.37 0.78 0.74 031 0.22 | 0.48 0.79

ence)

Improvement in % -14 22 6 18 -4 12 7

Parameters: Nneur = 88, niter = 30; 0} = 07 = 30, 0} = 33; 0} =0} =3, 0} = 2.

Table 1: Empirical evaluation of the asymmetric SOM algorithms for a collection of scientific
abstracts and the journals of the ACM digital library.

Table 1 shows the experimental results for the two problems considered: The abstracts of
scientific journals and the ACM digital library. The symmetric SOM algorithm (row 1) has
been taken as reference because it has been widely applied in text mining problems (see for
instance the WEBSOM [11]). The SOM topology has been chosen linear because the empirical
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evidence suggests that the network organization is better. The value of the parameters for
each algorithm is specified in table 1. Term vectors have been codified using the vector space
model [2] and normalized by the Ly norm. The primary conclusions are the following:

The first asymmetric version of SOM proposed in section 3 (row 2) outperforms the symmetric
counterpart. In particular the Mutual Information (I) is improved a 17% which suggests that
the position of specific terms in the map is significantly better in the asymmetric model.
This fact helps to avoid that the more specific terms (low norm) concentrate in some specific
area of the map regardless of their semantic meaning (see [4] for a detailed analysis of this
problem). Consequently the overlapping among terms belonging to different topics is reduced
in the map (AE = 8%). Finally the overall word map quality (F) is a 10% better than in
the symmetric version.

The unsupervised measures (Sp.) and (Sp. 10) show that the organization of the network
is even better than for the classic algorithm. This suggests that it is easier to preserve the
asymmetric similarity probably because the histogram is smoother.

The second asymmetric version of SOM (row 3) improves also the map generated by the
symmetric counterpart. Notice that as it was suggested in section 3 the overlapping in the
map is reduced more than in the previous algorithm (AE = 18%). However, the (Sp.) and
I measures suggest that the network organization is more problematic particularly for terms
of medium L; norm. Finally we point out that the overall word map quality (F) is improved
a 6%.

The experimental results for the journals of the ACM digital library collection corroborate
the superiority of the asymmetric algorithms proposed in this paper.

As a conclusion, the empirical evidence shows that incorporating asymmetry helps to improve
significantly the term associations suggested by the SOM algorithm. However, notice that
the asymmetry is not the only factor that distorts the distances in text mining problems (see
for instance [1]).

Finally figure 1 shows a visual map generated by our asymmetric SOM for the first textual
collection considered in this paper. For the sake of clarity only a small subset of terms that
belong to two different topics have been drawn. The SOM prototypes have been projected
using the Sammon algorithm [10] and those one corresponding to the neighboring neurons
have been joined together by continuous trace. Terms with L; norm > 30 and < 30 are
visualized in different colors.

The figure 1 shows that the terms are spread along the map regardless of the frequency
(L1 norm). The term associations induced by the map are satisfactory even for words with
disparate degree of generality (L; norm). Notice also that the network organization is satis-
factory.

5 Conclusions and future research trends

In this paper we have proposed two asymmetric variants of the SOM algorithm that improve
the visualization of the object proximities when relations are asymmetric. The algorithms
have been tested in the challenging problem of word relation visualization using real problems
such as the ACM digital library. The word maps have been exhaustively evaluated through
several objective functions.
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Figure 1: Word map generated by the asymmetric SOM for a collection of scientific abstracts.

The experimental results show that the asymmetric algorithms improve significantly the
map generated by a SOM algorithm that relies solely on the use of a symmetric distance.
In particular, our asymmetric models achieve a remarkable improvement of the position of
specific terms in the map. Besides, the new models keep the simplicity of the original SOM
algorithm.

Future research will focus on the development of new asymmetric techniques for classification
purposes.
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